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Chapter 1

Matrices and Vector Spaces

Often, real-world problems require us to deal with large amounts of data and information that can

be most efficiently organized by rows and columns in what we will refer to as a matrix. We will

soon see that matrices possess an arithmetic that yields a highly sophisticated and useful theory.

1.1 Matrices and Matrix Addition

Unless otherwise specified, we will assume throughout this chapter that m and n are positive

integers. We say that a visual representation of any collection of data arranged into m rows and n

columns is an m× n array. Each object of an m× n array A is a component or element of A.

Each component of A can be uniquely identified by specifying its row and column. Explicitly, we

use the symbol aij to indicate the component of A in the ith row and jth column; often, we will

refer to aij as the (i, j)th entry of the array A. Collectively, therefore, we may view the array A as

indexed by its objects aij for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n. Components of the

form aii are referred to as the diagonal entries of A because they lie in the same row and column

of A; the collection of all diagonal entries of A is called the main diagonal of A. We will adopt

the convention that an m×n array be written using large rectangular brackets, as in the following.

Example 1.1.1. Consider the case that Alice, Bob, Carly, and Daryl play Bridge together. If Alice

and Carly belong to one team and Bob and Daryl belong to the opposing team, then we may encode

this information (i.e., these teams) as the two columns of the following 2× 2 array T.

T =

[
Alice Bob

Carly Daryl

]
Observe that t11 = Alice, t12 = Bob, t21 = Carly, and t22 = Daryl. One could also just as well swap

the rows and columns to display the teams as rows by constructing the following 2× 2 array T t.

T t =

[
Alice Carly

Bob Daryl

]
Our principal concern throughout this course are those m×n arrays consisting entirely of (real)

numbers. Under this restriction, we may refer to anm×n array as a (real)m×nmatrix. Generally,

one can define matrices consisting of elements lying in any ring, but we will not be so general.

6



1.1. MATRICES AND MATRIX ADDITION 7

Example 1.1.2. Each real number x may be viewed as a real 1× 1 matrix
[
x
]
.

Example 1.1.3. Consider once again the scenario of Example 1.1.1. We may assign to each player

a real number called a “skill value” between 0 and 100, e.g., suppose that Alice has skill value 88;

Bob has skill value 72; Carly has skill value 95; and Daryl has skill value 90. Under this convention,

the matrices of Example 1.1.1 yield new matrices that we could call “skill matrices” as follows.

S =

[
88 72

95 90

]
and St =

[
88 95

72 90

]
Our previous three examples dealt with square matrices, i.e., matrices for which the number of

rows and the number of columns were the same (i.e., m = n); however, not all matrices are square.

Example 1.1.4. Consider the 1× 5 matrix
[
1 2 3 4 5

]
of the first five positive integers.

We refer to matrices with only one row as row vectors; likewise, matrices with only one column

are called column vectors. We will return to the notion of a vector in our study of vector spaces

in Section 1.6. Often, we will also use the terminology (horizontal) n-tuples when discussing row

vectors with n columns and (vertical) m-tuples when discussing column vectors with m rows.

Like we mentioned in the first paragraph of this section, anm×nmatrix A is uniquely determined

by the element aij in its ith row and jth column for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For instance, the matrix of Example 1.1.4 is the unique matrix with one row whose jth column

consists of the integer j for each integer 1 ≤ j ≤ 5. Under this identification, we will adopt the

one-line notation A =
[
aij

]
1≤i≤m
1≤j≤n

for the m× n matrix A with aij in its ith row and jth column.

Example 1.1.5. Consider the 2×3 matrix whose ith row and jth column consists of the sum i+ j.

We may write this symbolically (in one-line notation) as
[
i+ j

]
1≤i≤2
1≤j≤3

or expanded as follows.

[j = 1 j = 2 j = 3

i = 1 1 + 1 1 + 2 1 + 3

i = 2 2 + 1 2 + 2 2 + 3

]
or

[
2 3 4

3 4 5

]
Example 1.1.6. Given any positive integers m and n, there is one and only one matrix consisting

entirely of zeros: it is the m× n zero matrix, and it is denoted by Om×n.

Example 1.1.7. We refer to the matrix Im×n =
[
δij

]
1≤i≤m
1≤j≤n

as the m× n identity matrix, where

δij =

{
1 if i = j and

0 if i ̸= j

is the Kronecker delta. Put another way, the m× n identity matrix is the unique m× n matrix

whose (i, j)th component is one for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n such that i = j

and whose other components are all zero. One can also say that Im×n is the unique m× n matrix

with ones along the main diagonal and zeros elsewhere. Explicitly, we have the following examples.

I2×2 =

[
1 0

0 1

]
and I2×3 =

[
1 0 0

0 1 0

]
and I3×2 =

1 0

0 1

0 0

 and I3×3 =

1 0 0

0 1 0

0 0 1





8 CHAPTER 1. MATRICES AND VECTOR SPACES

Observe that the only nonzero components of In×n lie on the main diagonal, hence In×n is a diagonal

matrix. Explicitly, a diagonal matrix is an n × n matrix consisting entirely of zeros off the main

diagonal. Even more, In×n is the unique diagonal n× n matrix whose nonzero entries are all one.

Example 1.1.8. Given any m× n matrix A =
[
aij

]
1≤i≤m
1≤j≤n

, its matrix transpose At is the n×m

matrix obtained by swapping the rows and columns of A, i.e., we have that At =
[
aji

]
1≤i≤n
1≤j≤m

. Put

another way, the (i, j)th entry of At is the (j, i)th entry of A, hence the ith row of At is precisely

the ith column of A. Explicitly, for the matrix A defined in Example 1.1.5, we have the following.

A =

[
2 3 4

3 4 5

]
and At =

2 3

3 4

4 5


Observe that the first row of A becomes the first column of At (and likewise for the second row).

Consequently, the transpose of any 1×n row vector is an n×1 column vector. We will also refer to

At simply as the transpose of A; the process of computing At is called transposition. One other

thing to notice is that it always holds that I tm×n = In×m, hence we have that I tn×n = In×n.

Definition 1.1.9. We say that an m× n matrix A is symmetric if it holds that At = A. Observe

that a matrix is symmetric only if it is square, i.e., a non-square matrix is never symmetric.

Considering that matrices encode numerical data, it is not surprising to find that they induce

their own arithmetic. Using one-line notation, matrix addition can be defined as follows.

Definition 1.1.10. Given any m × n matrices A =
[
aij

]
1≤i≤m
1≤j≤n

and B =
[
bij

]
1≤i≤m
1≤j≤n

, the matrix

sum of A and B is the m×n matrix A+B =
[
aij + bij

]
1≤i≤m
1≤j≤n

. Put in words, the matrix sum A+B

is the m× n matrix whose (i, j)th entry is the sum of the (i, j)th entries of A and B.

Caution: the matrix sum is not defined for matrices with different numbers of rows or columns.

Example 1.1.11. We compute the matrix sum of the following 2× 3 matrices.[
1 2 3

4 5 6

]
+

[
−1 0 1

−1 0 1

]
=

[
1 +−1 2 + 0 3 + 1

4 +−1 5 + 0 6 + 1

]
=

[
0 2 4

3 5 7

]
Example 1.1.12. If A is any m × n matrix, then we have that A + Om×n = A = Om×n + A.

Consequently, we may view Om×n as the additive identity among all m× n matrices.

Generally, for any real m × n matrix A =
[
aij

]
1≤i≤m
1≤j≤n

, then we will typically refer to any (real)

number c as a scalar, and we define the scalar multiple of A by the scalar c as cA =
[
caij

]
1≤i≤m
1≤j≤n

.

Essentially, we may view this as generalizing the sum of the matrix A with itself c times.

Example 1.1.13. Given any m× n matrix A =
[
aij

]
1≤i≤m
1≤j≤n

, we will write −A =
[
−aij

]
1≤i≤m
1≤j≤n

. We

have that A+ (−A) = Om×n = −A+ A, and we say that −A is the additive inverse of A.

Our next proposition illustrates that matrix transposition and matrix addition are compatible.

Proposition 1.1.14. Let A and B be any m× n matrices. We have that (A+B)t = At +Bt. Put

another way, the transpose of a sum of matrices is the sum of the matrix transposes.
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Proof. By Definition 1.1.10, the (i, j)th entry of A+B is the sum of the (i, j)th entry of A and the

(i, j)th entry of B. By Example 1.1.8, the (i, j)th entry of (A+B)t is the (j, i)th entry of A+B, i.e.,

the sum of the (j, i)th entry of A and the (j, i)th entry of B. But by the same example, this is the

sum of the (i, j)th entry of At and the (i, j)th entry of Bt. Ultimately, this shows that the (i, j)th

entry of (A+B)t and the (i, j)th entry of At +Bt are the same so that (A+B)t = At +Bt.

1.2 Rotation Matrices and Matrix Multiplication

Let R denote the set of real numbers. Recall that every point (x, y) in the Cartesian plane R×R can

be written as (r cos θ, r sin θ) for some real number r and some angle θ. Explicitly, this is called the

representation of the point (x, y) in polar coordinates. Consequently, we may specify any point in

the plane by declaring that x = r cos θ and y = r sin θ for some real numbers r and θ. Rotation of the

point (x, y) through an angle ϕ yields a new point defined by x′ = r cos(θ+ϕ) and y′ = r sin(θ+ϕ).

Using the addition formulas for sine and cosine, we find that x′ = r(cos θ cosϕ − sin θ sinϕ) and

y′ = r(sin θ cosϕ + sinϕ cos θ). Our objective in this section is to provide a more efficient method

of rotating points in the plane through a specified angle ϕ. We achieve this as follows.

We have seen in the previous section that any matrix can be transposed and any two matrices

can be added together to obtain new matrices. Even more, if the number of columns (or rows) of a

matrix A equals the number of rows (or columns) of a matrix B, then A and B can be multiplied.

Definition 1.2.1. Given any m× n matrix A =
[
aij

]
1≤i≤m
1≤j≤n

and any n× r matrix B =
[
aij

]
1≤i≤n
1≤j≤r

,

the (left) matrix product of A and B is the m × r matrix AB whose (i, j)th entry is given by∑n
k=1 aikbkj = ai1b1j+ai2b2j+ · · ·+ainbnj. Put in words, the matrix product AB is the m×r matrix

whose (i, j)th entry is the sum of the products of the (i, k)th entry of A and the (k, j)th entry of

B for all integers 1 ≤ k ≤ n. Crucially, the order of the matrices A and B in the matrix product

matters; however, if we assume that r = m, then the (right) matrix product BA can be defined

analogously. Be sure to note also that the number of rows of AB is the same as the number of rows

of A, and the number of columns of AB is the same as the number of columns of B.

Caution: the product is not defined for matrices with an incompatible number of rows and columns.

Example 1.2.2. Consider the following matrices.

A =

[
1 2 3

2 3 4

]
and B =

−1 0

0 1

−1 1


Considering that A is a 2 × 3 matrix and B is a 3 × 2 matrix, both of the products AB and BA

can be formed: AB is a 2× 2 matrix, and BA is a 3× 3 matrix. Explicitly, they are as follows.

AB =

[
1 2 3

2 3 4

]−1 0

0 1

−1 1

 =

[
1(−1) + 2(0) + 3(−1) 1(0) + 2(1) + 3(1)

2(−1) + 3(0) + 4(−1) 2(0) + 3(1) + 4(1)

]
=

[
−4 5

−6 7

]

BA =

−1 0

0 1

−1 1

[
1 2 3

2 3 4

]
=

−1(1) + 0(2) −1(2) + 0(3) −1(3) + 0(4)

0(1) + 1(2) 0(2) + 1(3) 0(3) + 1(4)

−1(1) + 1(2) −1(2) + 1(3) −1(3) + 1(4)

 =

−1 −2 −3

2 3 4

1 1 1


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Remark 1.2.3. Example 1.2.2 motivates the following definition of matrix multiplication. Consider

a 1× n row vector v =
[
v11 v12 · · · v1n

]
and the following n× 1 column vector.

w =


w11

w21

...

wn1


We define the dot product v · w of the vectors v and w as the 1× 1 matrix vwt, i.e.,

v · w = vwt =
[
v11w11 + v12w21 + · · ·+ v1nwn1

]
.

Given any m× n matrix A and any n× r matrix B, the ith row of A may be viewed as the 1× n

vector Ai =
[
ai1 ai2 · · · ain

]
and the jth column of B as the following n× 1 vector.

Bj =


b1j
b2j
...

bnj


Ultimately, under this interpretation, the matrix product AB is defined as the m× r matrix whose

(i, j)th component is the dot product Ai ·Bj = ai1b1j + ai2b2j + · · ·+ ainbnj =
∑n

k=1 aikbkj.

We adapt the following example from the example at the bottom of page 50 of [Lan86].

Example 1.2.4. We say that an n× n matrix A is a Markov matrix if each component of A is

a non-negative real number and the sum of each column of A is 1. For instance, the 2× 2 matrix

A =

[
0.9 0.5

0.1 0.5

]
is a Markov matrix. We may view this Markov matrix as representing a real-life scenario as follows.

Godspeed You! Black Emperor are playing at the Blue Note in Columbia, Missouri, and Alice

and Bob are considering attending the concert. Currently, Alice is 90% certain that she will attend,

so she is 10% certain that she will not attend. On the other hand, Bob is only 50% sure he will

attend. Consequently, the columns of the matrix A represent Alice and Bob, respectively, and the

rows represent their certainty or uncertainty that they will attend the concert, respectively.

Even more, suppose that today, Alice has the propensity a to attend the concert and Bob has the

propensity b to attend, and tomorrow, Alice has the propensity 0.9a+0.5b to attend the concert and

Bob has the propensity 0.1a+0.5b to attend. Under these identifications, tomorrow, the propensity

that Alice and Bob will attend the concert is given by the following matrix product.[
0.9 0.5

0.1 0.5

] [
a

b

]
=

[
0.9a+ 0.5b

0.1a+ 0.5b

]
We could continue to iterate this process to predict the propensity that Alice and Bob will attend

the concert on any given day in the future; this is called a Markov process.
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We will demonstrate now that matrix multiplication is associative and distributive.

Proposition 1.2.5. If A is any m× n matrix, B is any n× r matrix, and C is any r × s matrix,

then the matrix products A(BC) and (AB)C are well-defined; in fact, they are equal.

Proof. By Definition 1.2.1, we have that BC is an n× s matrix, hence the matrix product A(BC)

is well-defined because the number of columns of A is equal to the number of rows of BC; a similar

argument shows that (AB)C is well-defined, hence it suffices to prove that A(BC) = (AB)C. By

the same definition, the (i, j)th entry of A(BC) is the sum of the products of the (i, k)th entry of

A and the (k, j)th entry of BC for all integers 1 ≤ k ≤ n, and the (k, j)th entry of BC is the sum

of the products of the (k, ℓ)th entry of B and the (ℓ, j)th entry of C for all integers 1 ≤ ℓ ≤ r. Put

into symbols, the previous sentence can be expressed as the double summation identity

A(BC)ij =
n∑

k=1

r∑
ℓ=1

aikbkℓcℓj.

Considering that the order of summation of a finite sum does not matter, it follows that

A(BC)ij =
r∑

ℓ=1

n∑
k=1

aikbkℓcℓj.

Observe that
∑n

k=1 aikbkℓ is nothing more than the (i, ℓ)th entry of AB, hence we may view the

(i, j)th entry of A(BC) as the sum of the products of the (i, ℓ)th entry of AB and the (ℓ, j)th entry

of C for all integers 1 ≤ i ≤ r, i.e., it is the (i, j)th entry of (AB)C. Ultimately, this shows that the

(i, j)th entry of A(BC) and the (i, j)th entry of (AB)C are the same so that A(BC) = (AB)C.

Proposition 1.2.6. If A is any m×n matrix and B and C are any n×r matrices, then the product

A(B + C) is well-defined; A(B + C) = AB + AC; and A(cB) = c(AB) for all scalars c.

Proof. By Definition 1.1.10, the matrix sum B+C is an n× r matrix, hence the product A(B+C)

is well-defined because the number of columns of A is equal to the number of rows of B + C. By

Definition 1.2.1, the (i, j)th entry of A(B +C) is the sum of the products of the (i, k)th entry of A

and the (k, j)the entry of BC for all integers 1 ≤ k ≤ n; the latter is by Definition 1.1.10 the sum

of the (k, j)th entry of B and the (k, j)th entry of C. Because multiplication is distributive over

addition, the (i, j)th entry of A(B+C) is the sum of the products of the (i, k)th entry of A and the

(k, j)th entry of B for all integers 1 ≤ k ≤ n plus the sum of the products of the (i, k)th entry of A

and the (k, j)th entry of C for all integers 1 ≤ k ≤ n, i.e., it is the sum of the (i, j)th entry of AB

and the (i, j)th entry of AC, i.e., it is the (i, j)th entry of AB + AC. Because the (i, j)th entry of

A(B+C) and the (i, j)th entry of AB+AC are the same, we conclude that A(B+C) = AB+AC.

We leave it as an exercise for the reader to demonstrate that A(cB) = c(AB) for all scalars c;

however, we remark that inspiration can be found in the proof of Proposition 1.2.5.

Ultimately, Proposition 1.2.6 implies that matrix multiplication is distributive, i.e., if A is any

m×n matrix, B and C are any n× r matrices, and c is any scalar, then A(cB+C) = c(AB)+AC.

Example 1.2.7. If A is any n×n matrix, then the matrix product of A with itself is denoted simply

by A2; it is an n× n matrix, hence we may form the matrix product of A2 with A. By Proposition
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1.2.5, we have that (A2)A = (AA)A = A(AA) = A(A2); we denote this simply by A3. Continuing

in this manner, the k-fold product of A is Ak = Ak−1A = AAk−1 for all integers k ≥ 2. Each of

these is an n×n matrix, so we can scale these matrices and add them together to obtain a matrix

polynomial. By the distributive property for matrices, matrix polynomials behave familiarly, e.g.,

(A− I)(A+ I) = A2 + AI − IA− I2 = A2 + A− A− I = A2 − I and

(A+ I)3 = (A2 + 2A+ I)(A+ I) = A3 + A2 + 2A2 + 2A+ A+ I = A3 + 3A2 + 3A+ I.

Even more, like matrix addition, matrix multiplication is compatible with transposition.

Proposition 1.2.8. If A is any m× n matrix and B is any n× r matrix, then (AB)t = BtAt. Put

another way, the transpose of a matrix product is the reverse matrix product of the transposes.

Proof. By Example 1.1.8, the (i, j)th entry of (AB)t is the (j, i)th AB. By Definition 1.2.1, the

(j, i)th entry of AB is the sum of the products of the (j, k)th entry of A and the (k, i)th entry of

B for all integers 1 ≤ k ≤ n. Considering that scalar multiplication is commutative, this is equal

to the sum of the products of the (i, k)th entry of Bt and the (k, j)th entry of At for all integers

1 ≤ k ≤ n, i.e., it is the (i, j)th entry of BtAt. We conclude therefore that (AB)t = BtAt.

We return now to the setup of the first paragraph of this section. Once again, we are considering

some point (x, y) in the Cartesian plane, and we are identifying this point by its polar coordinates

x = r cos θ and y = r sin θ for some real number r and some angle θ. Our aim is to efficiently

write down the rotation of (x, y) through another angle ϕ, resulting in a new point determined by

x′ = r cos(θ+ ϕ) and y′ = r sin(θ+ ϕ). By the addition formulas for sine and cosine, it follows that

x′ = r(cos θ cosϕ− sin θ sinϕ) and y′ = r(sin θ cosϕ+ sinϕ cos θ). Consider the following matrices.

R(ϕ) =

[
cosϕ − sinϕ

sinϕ cosϕ

]
and X(r, θ) =

[
r cos θ

r sin θ

]
Observe that X(r, θ) is the column vector corresponding to the point (x, y) in the Cartesian plane,

i.e., it encodes the same data as the point (x, y). By Definition 1.2.1, we have the following.

R(ϕ)X(r, θ) =

[
cosϕ − sinϕ

sinϕ cosϕ

] [
r cos θ

r sin θ

]
=

[
r(cos θcosϕ− sin θsinϕ)

r(sinϕ cos θ + sin θcosϕ)

]
=

[
r cos(θ + ϕ)

r sin(θ + ϕ)

]
Considering that the last matrix in the above displayed equation is exactly equal to the column

vector X(r, θ + ϕ), i.e., the column vector corresponding to the point (x′, y′), we conclude that the

multiplication by the matrix R(ϕ) has the effect of rotating the point (x, y) in the Cartesian plane

through the angle ϕ. Consequently, we refer to the matrix R(ϕ) as a rotation matrix.

Example 1.2.9. Consider the point (1, 0) in the Cartesian plane. Observe that in polar coordinates,

this point is determined by r cos θ = 1 and r sin θ = 0, hence we obtain the following column vector.

X(r, θ) =

[
1

0

]
By the previous paragraph, to rotate X(r, θ) through the angle ϕ = π/4, multiply by the following.

R(π/4) =

[
cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

]
=

[√
2/2 −

√
2/2√

2/2
√
2/2

]
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Consequently, we find that rotating the point (1, 0) through the angle ϕ = π/4 results in the point

X(r, θ + ϕ) =

[√
2/2 −

√
2/2√

2/2
√
2/2

] [
1

0

]
=

[√
2/2√
2/2

]
.

But if we consider the fact that the point (1, 0) lies on the unit circle and corresponds to the angle

θ = 0, then the point obtained by rotating (1, 0) through the angle of ϕ = π/4 must be exactly the

point on the unit circle corresponding to the angle π/4, i.e., it must be (
√
2/2,

√
2/2).

1.3 Elementary Row and Column Operations

We will continue to assume that m and n are positive integers. If x1, . . . , xn are any variables, then

a (real) linear combination of x1, . . . , xn is an expression of the form a1x1 + · · ·+ anxn for some

(real) scalars a1, . . . , an. Consequently, a (real) 1× n linear equation is any equation of the form

a1x1 + · · · + anxn = b for some (real) scalars a1, . . . , an, and b. Even more, a (real) m× n system

of linear equations consists of m linear equations in n variables; this is represented as follows.

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

Explicitly, the positive integer m represents the number of equations in the m× n system of linear

equations, and the positive integer n represents the number of variables in each equation.

Example 1.3.1. On 10 June 2022, in Game Four of the 2022 NBA Finals, Steph Curry scored 43

points. Let x1 be the number of one-pointers made; let x2 be the number of two-pointers made; and

let x3 be the number of three-pointers made by Curry in this appearance. Observe that Curry’s

point total is given by the 1× 3 (integer) linear equation x1 + 2x2 + 3x3 = 43.

We say that the (real) scalars ξ1, . . . , ξn constitute a solution to a (real) m×n system of linear

equations if it holds that ai1ξ1 + · · ·+ ainξn = bi for each integer 1 ≤ i ≤ m.

Example 1.3.2. One can find many solutions to the matrix equation of Example 1.3.1. Explicitly,

ξ1 = 43 and ξ2 = ξ3 = 0 or ξ1 = 41, ξ2 = 1, and ξ3 = 0 give rise to two distinct solutions.

Given more information about the game, we can reduce the number of possible solutions. For

instance, Curry made seven three-pointers, hence we may substitute x3 = 7 into our equation

x1 + 2x2 + 3x3 = 43 to find that x1 + 2x2 + 21 = 43 or x1 + 2x2 = 22. Even more, Curry made a

combined fifteen free throws and two-pointers. Consequently, we have that x1 + x2 = 15. Observe

that these two equations involving x1 and x2 induce the following 2× 2 system of linear equations.

x1 + 2x2 = 22

x1 + x2 = 15

Using this information, we may uniquely determine x1 and x2: we have that x1 = 15 − x2 so that

22 = x1 + 2x2 = (15− x2) + 2x2 = 15 + x2; cancelling 15 from both sides gives x2 = 7 and x1 = 8.
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Using matrices, we can more efficiently rephrase our above observations concerningm×n systems

of linear equations. Explicitly, observe that a (real) m× n system of linear equations

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

gives rise to a 1 × n matrix x =
[
x1 x2 · · · xn

]
, a 1 ×m matrix b =

[
b1 b2 · · · bm

]
, and an

m× n matrix A whose (i, j)th entry is the coefficient aij of the jth variable xj of the ith equation

ai1x1 + · · ·+ ainxn = bi of the m× n system of linear equations, i.e., the following m× n matrix.

A =


a11 · · · a1n
a21 · · · a2n
...

...

am1 · · · amn


Conversely, the aforementioned matrices A, x, and b satisfy that Axt = bt. We refer to the equation

Axt = bt as a (real) m × n matrix equation. Often, the m × n matrix A and the 1 ×m matrix

b are known while the 1 × n matrix x consists of n variables. Ultimately, we obtain a one-to-one

correspondence between (real) m× n systems of linear equations and m× n matrix equations.

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...

am1x1 + · · ·+ amnxn = bm

⇐⇒ Axt = bt, i.e.,


a11 · · · a1n
a21 · · · a2n
...

...

am1 · · · amn



x1

x2

...

xn

 =


b1
b2
...

bm


Example 1.3.3. We will convert the data of Examples 1.3.1 and 1.3.2 into the language of matrix

equations. Consider the matrix A =
[
1 2 3

]
whose jth column is the point value of a j-pointer;

the matrix x =
[
x1 x2 x3

]
whose jth column is the number of j-pointers made by Curry; and

the matrix b =
[
43
]
consisting of the total points made by Curry. Observe that the linear equation

x1 + 2x2 + 3x3 = 43 is in one-to-one correspondence with the matrix equation Axt = bt.

We say that a 1×n (real) matrix ξ forms a solution to the matrix equation Axt = bt if it holds

that Aξt = bt. Observe that this is an analog of a solution of the m× n system of linear equations.

Example 1.3.4. Rephrasing the results of 1.3.2, the matrices ξ1 =
[
43 0 0

]
and ξ2 =

[
41 1 0

]
give rise to two distinct solutions of the matrix equation of Example 1.3.3. On the other hand,

put into the language of matrix equations, the information that 22 = x1 + 2x2 and 15 = x1 + x2

can be most efficiently synthesized by viewing the coefficients of these linear equations as rows

of a matrix. Explicitly, we construct a matrix A whose first row is
[
1 2

]
, corresponding to the

respective coefficients of x1 and x2 in the equation 22 = x1+2x2; the second row of the matrix A is[
1 1

]
, corresponding to the respective coefficients of x1 and x2 in the equation 15 = x1 + x2. Once

again, the column vector xt consists of the variables x1 and x2 in distinct rows, and the column

vector bt consists of the integers 22 and 15 in distinct rows. Ultimately, yields the matrix equation

Axt = bt or

[
1 2

1 1

] [
x1

x2

]
=

[
22

15

]
.
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Once we have extracted an m×n matrix equation Axt = bt from a (real) m×n system of linear

equations, our next objective is to determine the matrix analog of solving the system. Before we

do this, recall the following three valid operations for working with systems of linear equations.

(1.) We may multiply the ith equation by a nonzero (real) scalar c.

(2.) We may add c times the ith equation to the jth equation for all integers 1 ≤ i, j ≤ m.

(3.) We may interchange the ith and jth equations for all integers 1 ≤ i, j ≤ m.

Consequently, we are looking for matrix analogs of the above three operations. Considering that

the coefficients of ith equation are encoded in the ith row of the matrix A and the ith row of the

matrix bt, we must henceforth work with the augmented matrix
[
A bt

]
. By definition, this is

simply the matrix A with one additional column in the form of bt. We use the bar | notation to

emphasize that bt is appended to the matrix A, i.e., it is not originally a column of A. By definition

of matrix multiplication, operation (1.) is analogous to left multiplication by the m × m matrix

with c in row i, column i; 1 in all other entries of the main diagonal; and 0s elsewhere.

(1.) Multiplication of the ith row of an m×n system of linear equations by a scalar c corresponds

to left multiplication of the m× (n+1) augmented matrix
[
A bt

]
by the m×m matrix with

c in row i, column i; 1 in all other entries of the main diagonal; and 0s elsewhere.

Example 1.3.5. We obtain the following augmented matrix for the matrices of Example 1.3.4.

[
A bt

]
=

[
1 2 22

1 1 15

]
Consequently, to scale the first equation x1+2x2 = 22 by a factor of c, we multiply this augmented

matrix by the 2× 2 matrix with c in row 1, column 1; 1 in row 2, column 2; and 0s elsewhere.[
c 2c 22c

1 1 15

]
=

[
c 0

0 1

] [
1 2 22

1 1 15

]
Likewise, operation (2.) is analogous to left multiplication by the m×m matrix with c in row

j, column i; 1s along the main diagonal; and 0s elsewhere. Explicitly, we obtain the following rule.

(2.) Addition of c times the ith row of an m × n system of linear equations to the jth row

corresponds to left multiplication of the m× (n+1) matrix
[
A bt

]
by the m×m matrix with

c in row j, column i; 1s along the main diagonal; and 0s elsewhere.

Example 1.3.6. Consider the augmented matrix
[
A bt

]
of Example 1.3.5. Observe that if we

wish to subtract the first equation x1 + 2x2 = 22 from the second equation x1 + x2 = 15, then it

suffices to add −1 times the first equation to the second equation. By the previous observation,

this can be achieved on the level of matrices by performing the following matrix multiplication.[
1 2 22

0 −1 −7

]
=

[
1 0

−1 1

] [
1 2 22

1 1 15

]
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Last, operation (3.) is analogous to left multiplication by the m ×m matrix with (i, j)th and

(j, i)th entries of 1; 1s along the main diagonal other than in rows i and j; and 0s elsewhere.

(3.) Interchanging rows i and j of an m× n system of linear equations corresponds to left multi-

plication of the m× (n + 1) matrix
[
A bt

]
by the m×m matrix with 1 in row j, column i;

1 in row i, column j; 1s along the main diagonal other than rows i and j; and 0s elsewhere.

Example 1.3.7. Once again, consider the augmented matrix
[
A bt

]
of Example 1.3.5. We may

interchange the first equation x1 + 2x2 = 22 and the second equation x1 + x2 = 15 as follows.[
1 1 15

1 2 22

]
=

[
0 1

1 0

] [
1 2 22

1 1 15

]
Collectively, we refer to the operations (1.), (2.), and (3.) defined above as the elementary

row operations; the matrices defined in operations (1.), (2.), and (3.) are then called the m×m

elementary row matrices. Explicitly, an elementary row matrix is an m ×m matrix obtain by

from the m ×m identity matrix Im by (1.) multiplying any row of Im by a nonzero scalar c; (2.)

adding c times the ith row of Im to the jth row of Im; or (3.) interchanging rows i and j of Im.

Likewise, the three above operations can be defined for the columns of a matrix to obtain the

elementary column operations and the elementary column matrices: we need only swap

all instances of “rows” with “columns” and “left multiplication” with “right multiplication.”

1.4 The Method of Gaussian Elimination in Linear Systems

We will soon see that performing elementary row and column operations on a system of linear

equations does not affect the solutions to the system, hence it does not alter the solutions of the

underlying matrix equation. Even more, if we employ a sequence of elementary row and column

operations to reduce a given augmented matrix to a “relatively simple” form and subsequently in-

terpret the resulting augmented matrix “correctly,” then we can easily read off all possible solutions

to the underlying system of linear equations. We illustrate this in the case of Example 1.3.6.

Example 1.4.1. Consider the augmented matrix
[
A bt

]
of Example 1.3.6. Converting this back

into a system of equations, the second row of the augmented matrix yields that −x2 = −7, hence

we conclude that x2 = 7. Consequently, the first row gives that 22 = x1 + 2x2 = x1 + 14 or x1 = 8.

We refer to this as the method of solving a system of linear equations via back substitution.

Going forward, we will say that two matrices A and B are row equivalent if A can be reduced to

B via a sequence of elementary row operations, i.e., there exist elementary row matrices E1, . . . , Ek

such that B = Ek · · ·E1A. Likewise, we make the analogous definition for column equivalent

matrices. If A and B are either row or column equivalent, then we will write A ∼ B.

Example 1.4.2. By Example 1.3.6 of the previous section, we have that

A =

[
1 2

1 1

]
and B =

[
1 2

0 −1

]

are row equivalent because B = EA for the elementary row matrix E =

[
1 0

−1 1

]
.



1.4. THE METHOD OF GAUSSIAN ELIMINATION IN LINEAR SYSTEMS 17

By Example 1.4.1, it is clearly advantageous (when possible) to perform a sequence of elementary

row operations to reduce a matrix A to a matrix B in which some row has the property that all but

one of its entries is nonzero. If this holds, then the row of B consisting of just one nonzero entry

can be used to further reduce A to a matrix possessing more zero entries, as we illustrate next.

Example 1.4.3. Consider the row equivalent matrices A and B of Example 1.4.2. Observe that if

we add twice the second row of B to the first row of B, then we obtain the matrix

C =

[
1 0

0 −1

]
=

[
1 2

0 1

] [
1 2

0 −1

]
.

Certainly, matrices with more zero entries are easier to interpret as the collection of coefficients

corresponding to some system of linear equations because the variables corresponding to the zeros

of the ith row of the matrix do not appear in the ith equation of the system. Even more, the zeros

of a matrix inform us about other important properties of the matrix that we will soon discuss.

Consequently, we turn our attention in this section to an algorithm that we may employ to reduce

a given matrix A to a row equivalent matrix consisting of as many zeros as possible.

We say that a row of an m× n matrix A is nonzero if it contains (at least) one nonzero entry.

Using this identification, an m× n matrix A lies in row echelon form if and only if

(1.) all rows of A consisting entirely of zeros lie beneath the last nonzero row of A; and

(2.) for any pair of consecutive nonzero rows i and i+1, the first nonzero entry of row i+1 lies in

some column strictly to the right of the column in which the first nonzero entry of row i lies.

Given a matrix A that lies in row echelon form, we distinguish the first nonzero entry of a nonzero

row of A as a pivot. We have already encountered instances of matrices in row echelon form: the

matrices B of Example 1.4.2 and C of Example 1.4.3 lie in row echelon form; however, the matrix A

of Example 1.4.2 does not lie in row echelon form because the first nonzero entry of the second row

of A lies directly below the first nonzero entry of the first row of A. Even more, the pivots of the

aforementioned matrix B (and C) are 1 in the first row and −1 in the second row. Crucially, the

following theorem assures us that it is always possible to reduce any matrix to row echelon form.

Theorem 1.4.4. Every real matrix is row equivalent to a real matrix in row echelon form.

Proof. Consider a real m × n matrix A. Begin by relocating all rows of A consisting entirely of

zeros to the bottom of the matrix; interchanging rows corresponds to multiplying on the left by an

elementary row matrix, hence the resulting matrix is row equivalent to A. We may disregard all

columns of A consisting entirely of zeros because the columns of A do not bear on the row echelon

form of A, hence we may assume that the first column of A is nonzero; then, find the first nonzero

row of A for which the entry in first column of A is nonzero. By interchanging this row with the

first row of A, we may ultimately assume that our m× n matrix A has the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


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in which the lowermost rows could consist of zeros and a11 is nonzero by assumption. Every nonzero

real number has a multiplicative inverse, hence we may subtract ai1a
−1
11 times the first row from the

ith row; this corresponds to left multiplication by an elementary row matrix and yields that

A ∼


a11 a12 · · · a1n
0 b22 · · · b2n
...

...
...

0 bm2 · · · bmn


for some real numbers b22, . . . , bmn. Employing this process with the (m− 1)× (n− 1) submatrix

B =

 b22 · · · b2n
...

...

bm2 · · · bmn


and subsequently continuing in this manner, we will eventually reduce A to row echelon form.

We say moreover that a matrix lies in reduced row echelon form if and only if

(1.) it lies in row echelon form;

(2.) its pivots are all 1; and

(3.) if the jth column contains a pivot, then all of its non-pivot entries are zero. Put another way,

the only nonzero entry of any column containing a pivot is the pivot itself.

Corollary 1.4.5. Every real matrix is row equivalent to a real matrix in reduced row echelon form.

Proof. By Theorem 1.4.4, every real matrix A is row equivalent to a real matrix B in row echelon

form. By multiplying each nonzero row of B by the multiplicative inverse of its pivot, we obtain a

row equivalent matrix C whose pivots are all 1. Last, we must ensure that the only nonzero entry of

any column containing a pivot is the pivot itself. Observe that if cij is nonzero and the jth column

of C contains a pivot in row k, then we may add −cij times the kth row of C to the ith row of C

to obtain 0 in the ith row and jth column of C. Continuing in this manner yields the result.

Essentially, the proofs of Theorem 1.4.4 and Corollary 1.4.5 outline the method of Gaussian

Elimination in systems of linear equations; for completeness, we summarize the results below.

Algorithm 1.4.6 (Gaussian Elimination). Let A be a nonzero real m×n matrix. Use the following

steps to reduce the matrix A to a row equivalent matrix B that lies in reduced row echelon form.

(1.) Begin by relocating all rows of A consisting entirely of zeros to the bottom of the matrix. We

may perform this operation because row interchange yields a row equivalent matrix.

(2.) Find the first nonzero row i of the matrix obtained in the previous step for which the entry

ai1 in first column is nonzero; if this is not the first row, then interchange the first and ith

rows of this matrix so that ai1 lies in the first row and column of the resulting matrix.



1.4. THE METHOD OF GAUSSIAN ELIMINATION IN LINEAR SYSTEMS 19

(3.) Multiply the first row of the resulting matrix by the multiplicative inverse a−1
i1 of the nonzero

real number ai1 to obtain an entry of 1 in the first row and first column. We may perform

this operation because multiplying a row by a nonzero scalar yields a row equivalent matrix.

(4.) If rj is the component of the jth row and first column of the matrix obtained in step (3.),

then add −rj times the first row of this matrix to the jth row of this matrix for each integer

1 ≤ j ≤ m. We may perform this operation because adding a scalar multiple of a row to

another row yields a row equivalent matrix. Observe that the only nonzero entry in the first

column of the resulting matrix is the pivot of 1 in the first row and first column.

(5.) Repeat steps (2.), (3.), (4.) for the matrix obtained from the resulting matrix of step (4.) by

ignoring the first row and first column; if possible, a pivot of 1 is obtained in the second row

of this matrix, and all entries of the matrix below this pivot are zero.

(6.) Repeat step (5.) until the row echelon form of A is obtained and all pivots are 1.

(7.) Eliminate any nonzero entry aij in row i above the pivot 1 in row k by adding −aij times the

kth row of the matrix of step (6.) to the ith row of the matrix.

(8.) Repeat step (7.) until the matrix lies in reduced row echelon form.

We refer to the matrix obtained from this process as the reduced row echelon form RREF(A).

One of the best ways to understand the method of Gaussian Elimination is to practice using it.

Example 1.4.7. Let us convert the following matrix to reduced row echelon form.

A =

 2 −3 7

−1 0 3

2 1 5


Considering that each of the rows of A is nonzero, we may immediately proceed to the second step

of the Gaussian Elimination algorithm. Observe that the first nonzero row of A for which the entry

in the first column is nonzero is simply the first row of A, so we may proceed to the third step of

the algorithm. Explicitly, we multiply the first row of A by 1
2
(i.e., the multiplicative inverse of 2)

to obtain an entry of 1 in the first row and first column of A. We illustrate this as follows.

A =

 2 −3 7

−1 0 3

2 1 5

 1
2
R1 7→R1∼

 1 −3
2

7
2

−1 0 3

2 1 5


We may subsequently reduce all first column entries beneath the first row of the resulting matrix. 1 −3

2
7
2

−1 0 3

2 1 5

 R2+R1 7→R2∼

1 −3
2

7
2

0 −3
2

13
2

2 1 5

 R3−2R1 7→R3∼

1 −3
2

7
2

0 −3
2

13
2

0 4 3
2





20 CHAPTER 1. MATRICES AND VECTOR SPACES

We have therefore created a pivot of 1 in the first row and first column, so we proceed to do the

same for the second row and second column. Explicitly, we multiply the second row of the above

matrix by −2
3
(i.e., the multiplicative inverse of −3

2
) to obtain the following row equivalent matrix.1 −3

2
7
2

0 −3
2

13
2

0 4 3
2

 − 2
3
R2 7→R2∼

1 −3
2

7
2

0 1 −13
3

0 4 3
2


We may then create a pivot of 1 in the second row and second column of this matrix by adding −4

times the second row to the third row, reducing the entry in the third row and second column to 0.1 −3
2

7
2

0 1 −13
3

0 4 3
2

 R3−4R2 7→R3∼

1 −3
2

7
2

0 1 −13
3

0 0 95
6


Last, we obtain a pivot of 1 in the third row and third column by multiplying by the multiplicative

inverse 6
95

of 95
6
. Ultimately, we obtain the row echelon form of A for which all pivots are 1.1 −3

2
7
2

0 1 −13
3

0 0 95
6

 6
95

R3 7→R3∼

1 −3
2

7
2

0 1 −13
3

0 0 1


We proceed to the seventh and eighth steps of the Gaussian Elimination algorithm. Because there

is a pivot in the second row, we eliminate first the nonzero non-pivot entries in the second column.1 −3
2

7
2

0 1 −13
3

0 0 1

 R1+
3
2
R2 7→R1∼

1 0 −3

0 1 −13
3

0 0 1


Once this is accomplished, we put the matrix in reduced row echelon form as follows.1 0 −3

0 1 −13
3

0 0 1

 R1+3R3 7→R1∼

1 0 0

0 1 −13
3

0 0 1

 R2+
13
3
R3 7→R2∼

1 0 0

0 1 0

0 0 1


Ultimately, the method of Gaussian Elimination illustrates that our original matrix A is in fact row

equivalent to the 3× 3 identity matrix. We will see in the next section that row equivalence to the

n× n identity matrix is a very important and special property of a square matrix.

1.5 Invertible Matrices

We will assume throughout this section that n is a positive integer. Given any n× n matrix A, we

say that an n×n matrix L is a left inverse of A if it holds that LA = In×n, where In×n is the n×n

identity matrix. Likewise, we say that an n × n matrix R is a right inverse of A if it holds that

AR = In×n. We will establish immediately that every left inverse of A is also a right inverse and

vice-versa, hence we may dispense of the distinct notions of left and right inverses of matrices and

simply say that an n × n matrix B is a (two-sided) inverse of an n × n matrix A if it holds that

AB = In×n = BA. Our next proposition shows that a two-sided inverse of a matrix A is unique.
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Proposition 1.5.1. Let A be an n× n matrix. Every left inverse of A is a right inverse of A and

vice-versa (provided they both exist). Even more, if A admits a two-sided inverse, it is unique.

Proof. Consider any n× n matrices L and R such that LA = In×n = AR. By Proposition 1.2.5, we

have that L = LIn×n = L(AR) = (LA)R = In×nR = R. Consequently, L is a two-sided inverse of

A. Even more, if L′ is any two-sided inverse of A, then it is a right inverse of A so that L′ = L.

Consequently, if an n× n matrix A admits a (two-sided) inverse, then it is unique, and we may

denote it by A−1.We will also say in this case that A is invertible (or non-singular). Certainly, the

zero matrix does not possess an inverse, hence some (and in fact many) matrices are not invertible.

We demonstrate next how matrix inverses behave in relation to other matrix operations.

Proposition 1.5.2. Let A be any n× n matrix. If A−1 exists, then (At)−1 = (A−1)t. Put another

way, if A is invertible, then At is invertible, and its inverse is the transpose of A−1.

Proof. By Proposition 1.2.8, it follows that (A−1)tAt = (AA−1)t = I tn×n = In×n, and we conclude

that (At)−1 = (A−1)t by the uniqueness of the matrix inverse guaranteed by Proposition 1.5.1.

Proposition 1.5.3. Let A1, . . . , Ak be any invertible n× n matrices. We have that

(A1 · · ·Ak)
−1 = A−1

k · · ·A−1
1 .

Put another way, the inverse of a product of invertible matrices is the reverse product of the inverses.

Proof. By Proposition 1.5.1, it suffices to verify that (A−1
k · · ·A−1

1 )(A1 · · ·Ak) = In×n. Considering

that A−1
i Ai = In×n for all integers 1 ≤ i ≤ k, we may replace every instance of A−1

i Ai with In×n;

then, using the fact that In×nB = B for any n× r matrix B, the result eventually follows.

Using the method of Gaussian Elimination, we can determine if an n × n matrix A admits an

inverse, and we may subsequently compute A−1 in this way, as well. Before we demonstrate this, we

remind the reader that two matrices are row equivalent if and only if there exist some elementary

row matrices whose product (on the left) of one matrix gives the other. Elementary row matrices

are the n× n matrices obtained from the n× n identity matrix by performing one of the following.

(1.) We may multiply any row of In×n by a nonzero scalar c.

(2.) We may add c times the ith row of In×n to the jth row of In×n.

(3.) We may interchange any pair of rows i and j of In×n.

We refer to the above operations as the elementary row operations.

Proposition 1.5.4. Every elementary row matrix is invertible.

Proof. Let E be an n× n elementary row matrix. Consider the following three cases.

(1.) If E is obtained from In×n by multiplying the ith row of In×n by a nonzero scalar c, then E−1

is obtained from In×n by multiplying the ith row of In×n by the nonzero scalar c−1.



22 CHAPTER 1. MATRICES AND VECTOR SPACES

(2.) If E is obtained from In×n by adding c times the ith row of In×n to the jth row of In×n, then

E−1 is obtained from In×n by adding −c times the ith row of In×n to the jth row of In×n.

(3.) If E is obtained from In×n by interchanging rows i and j of In×n, then E is its own inverse.

Corollary 1.5.5. If A and B are row equivalent, then A is invertible if and only if B is invertible.

Proof. By definition, the n×n matrix A is row equivalent to the n×n matrix B if and only if there

exist n × n elementary row matrices E1, . . . , Ek such that B = Ek · · ·E1A. Observe that if B is

invertible, then A is invertible because (B−1Ek · · ·E1)A = In×n. Conversely, if A is invertible, then

B is invertible by Propositions 1.5.3 and 1.5.4: In×n = B(Ek · · ·E1A)
−1 = BA−1E−1

1 · · ·E−1
k .

By Corollary 1.4.5, every n × n matrix A is row equivalent to its reduced row echelon form

RREF(A). Consequently, by the previous corollary, it follows that A is invertible if and only if

RREF(A) is invertible. Particularly, if RREF(A) admits any rows consisting entirely of zeros, then

it is not invertible (because the last row of RREF(A)B is zero for all n × r matrices B), hence A

cannot be invertible. Conversely, we will demonstrate that if all rows RREF(A) are nonzero, then

it is invertible, hence A is invertible. Before this, we mention that an upper-triangular matrix

is an n×n matrix with the property that if i < j, then the (i, j)th component of the matrix is zero.

Put another way, all entries below the main diagonal of an upper-triangular matrix are zero.

Theorem 1.5.6. Every upper-triangular matrix with nonzero diagonal elements is invertible.

Proof. By definition, every n× n upper-triangular matrix U can be written as follows.

U =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 0 · · · ann


By hypothesis that aii is nonzero for each integer 1 ≤ i ≤ n, we may multiply the ith row of the

above matrix by a−1
ii to obtain an upper-triangular matrix whose pivots are all 1. Consequently, we

assume from the beginning that this is the case, i.e., we may consider the following case.

U =


1 a12 · · · a1n
0 1 · · · a2n
...

...
...

0 0 · · · 1


By Corollary 1.5.5, it suffices to demonstrate that U is row equivalent to the invertible n×n identity

matrix In×n. We achieve this by furnishing some elementary row operations that reduces U to In×n.

Observe that if we add −ain times the last row of U to the ith row of U, then we obtain a 0 in the

(i, n)th component of the resulting matrix. Continuing in this way, we may reduce the nth column

of U to zero except in the bottom right-hand corner. Considering that adding any scalar multiple

of a row of U to another row of U is a row equivalence, we conclude that U is row equivalent to

this matrix. Continuing in this way for each column of U from right to left, we obtain In×n.
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Corollary 1.5.7. An n×n matrix is invertible if and only if it is row equivalent to the n×n identity

matrix. Even more, we may obtain the unique inverse matrix by performing Gaussian Elimination.

Proof. By Theorem 1.5.6 and the paragraph that precedes it, an n × n matrix A is invertible if

and only if the upper-triangular matrix RREF(A) is invertible if and only if RREF(A) = In×n.

Consequently, there exist some elementary row operations E1, . . . , Ek such that Ek · · ·E1A = In×n,

from which we conclude that the unique inverse of A is given by A−1 = Ek · · ·E1.

Corollary 1.5.8. Every invertible n× n matrix is a product of elementary row matrices.

Proof. By the proof of Corollary 1.5.7, every invertible n × n matrix A admits some elementary

row matrices E1, . . . , Ek such that Ek · · ·E1A = In×n. By multiplying both sides on the left by

E−1
1 · · ·E−1

k , we obtain that A = E−1
1 · · ·E−1

k . By the proof of Proposition 1.5.4, each of the matrices

E−1
1 , . . . , E−1

k is an elementary row matrix, hence A is the product of elementary row matrices.

Example 1.5.9. Let us illustrate the method of Gaussian Elimination to determine a numerical

criterion under which an arbitrary real 2× 2 matrix is invertible. Consider any 2× 2 matrix

A =

[
a b

c d

]
such that a, b, c, and d are real numbers. Observe that if a = 0 and c = 0, then A is not invertible

because the first row of the matrix BA will be zero for all real m× 2 matrices B. Consequently, we

may assume that a is nonzero. By multiplying the first row of A by a−1, we obtain the following.

A
a−1R1 7→R1∼

[
1 a−1b

c d

]
Equivalently, the displayed matrix above is E1A for the following elementary row matrix

E1 =

[
a−1 0

0 1

]
We may subsequently create a pivot in the first row and first column of E1A by adding −c times

the first row of E1A to the second row of E1A. Explicitly, we obtain the following.

E1A
R2−cR1 7→R2∼

[
1 a−1b

0 d− a−1bc

]
Equivalently, the displayed matrix above is E2E1A for the following elementary row matrix.

E2 =

[
1 0

−c 1

]
Observe that if d− a−1bc = 0, then the last row of E2E1A is zero, hence it is not invertible so that

A is not invertible. Consequently, we must have that d− a−1bc is nonzero, i.e., we must have that

ad− bc is nonzero. Continuing onward, because d− a−1bc is nonzero, it possesses a multiplicative

inverse (d− a−1bc)−1. By multiplying the last row of E2E1A by (d− a−1bc)−1, obtain the following.

E2E1A
(d−a−1bc)−1R2 7→R2∼

[
1 a−1b

0 1

]
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Equivalently, the displayed matrix above is E3E2E1A for the following elementary row matrix.

E3 =

[
1 0

0 (d− a−1bc)−1

]
Last, by adding −(d− a−1bc)−1 times the second row of A to the first row of A, we obtain a pivot

in the second row and second column. Explicitly, if we multiply E3E2E1A on the left by

E4 =

[
1 −a−1b

0 1

]
,

then we obtain E4E3E2E1A = I2×2 so that A−1 = E4E3E2E1. Explicitly, the following holds.

A−1 =

[
1 −a−1b

0 1

] [
1 0

0 (d− a−1bc)−1

] [
1 0

−c 1

] [
a−1 0

0 1

]
=

1

ad− bc

[
d −b

−c a

]
Consequently, our original matrix A is invertible if and only if ad− bc is nonzero.

Example 1.5.10. We will compute one more example to demonstrate the method of Gaussian

Elimination, but in this case, we will keep track of the elementary row operations in a simpler

manner than in Example 1.5.9. Observe that if A is an n × n matrix, then we may construct the

augmented matrix
[
A In×n

]
by adjoining the n×n identity matrix In×n on the right-hand side of A.

If A is invertible, then by performing elementary row operations to this augmented matrix, we may

reduce A to In×n and simultaneously convert In×n to A−1. Explicitly, we will obtain
[
In×n A−1

]
.

Consider the following 3× 3 matrix A and the resulting augmented matrix
[
A I3×3

]
.

A =

1 1 1

1 1 2

1 2 2

 and
[
A I3×3

]
=

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1


We will carry out the Gaussian Elimination as follows, listing each elementary row operation.1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1

 R2−R1 7→R2
R3−R1 7→R3∼

1 1 1 1 0 0

0 0 1 −1 1 0

0 1 1 −1 0 1

 R2↔R3∼

1 1 1 1 0 0

0 1 1 −1 0 1

0 0 1 −1 1 0



R1−R3 7→R1
R2−R3 7→R2∼

1 1 0 2 −1 0

0 1 0 0 −1 1

0 0 1 −1 1 0



R1−R2 7→R1∼

1 0 0 2 0 −1

0 1 0 0 −1 1

0 0 1 −1 1 0


By the first paragraph above, we conclude ultimately that the inverse of A is given as follows.

A−1 =

 2 0 −1

0 −1 1

−1 1 0


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1.6 Vector Spaces

Going forward, we will refer to a collection of like objects (such as real m × n matrices) as a set;

the objects of a set are called elements or members. We will use the symbol ∈ to denote set

membership, i.e., we write that s ∈ S if and only if s is an element of the set S.

Example 1.6.1. Consider the set S consisting of the first five positive integers 1, 2, 3, 4, and 5.

We note that the elements of S are precisely the numbers 1, 2, 3, 4, and 5; in particular, we may

write that 1 ∈ S, 2 ∈ S, and so on for each of the remaining three integers. We say in this case

that S is a finite set because it has only finitely many members. We use curly braces to denote

a finite set by its elements, hence we have that S = {1, 2, 3, 4, 5}. One thing to notice is that the

arrangement of the elements of S does not matter because S is only keeping track of what belongs

to it. Likewise, the number of times an element of S appears in S does not matter. Explicitly,

it is true that S = {1, 2, 3, 4, 5} = {2, 4, 1, 3, 5} = {2, 4, 2, 1, 2, 3, 2, 5}; however, it is not true that

S = {0, 1, 2, 3, 4, 5} because the set {0, 1, 2, 3, 4, 5} has the non-negative integer 0 as a member.

Example 1.6.2. Often, we will consider sets consisting of infinitely many elements; we call these

infinite sets. Clearly, it is not possible to list the infinitely many elements of such a set, hence we

turn to the so-called set-builder notation to describe the elements of an infinite set. For instance,

the set of real numbers R is an infinite set; its elements are simply real numbers, so in set-builder

notation, we write R = {x | x is a real number}, and we read this as, “R is the set of all elements

x such that x is a real number.” Explicitly, in set-builder notation, we may describe a set S as

S = {the objects of S | the set membership property for S}.

Back to our example of the real numbers, the objects in R are denoted by x, and the set membership

property for R is that x is a real number. Put another way, in set-builder notation for a set S, the

objects of the set S come first; then, we put a vertical bar | to signify the phrase “such that”; and

finally, we put the condition under which an object belongs to the set S in question.

Example 1.6.3. Consider the collection Rm×n of real m× n matrices; this is an infinite set whose

set membership condition can be expressed as A ∈ Rm×n if and only if A is a real m × n matrix.

Consequently, in set-builder notation, we have that Rm×n = {A | A is a real m× n matrix}.
Example 1.6.4. Consider the collection R[x] of real polynomials in indeterminate x; this is an

infinite set whose set membership condition can be expressed as p(x) ∈ R[x] if and only if p(x) is a

real polynomial in indeterminate x. Consequently, in set-builder notation, we have that

R[x] = {p(x) | p(x) is a real polynomial in indeterminate x}.

One other way to realize this set in set-builder notation is to notice that every real polynomial in

indeterminate x can be written as anx
n + · · ·+ a1x+ a0 for some non-negative integer n and some

real numbers an, . . . , a1, a0. Consequently, under this identification, we may also write that

R[x] = {anxn + · · ·+ a1x+ a0 | n is a non-negative integer and an, . . . , a1, a0 are real numbers}.

Back in Example 1.1.4, we referred to any (real) 1×n matrix as a 1×n row vector. Our objective

throughout this section is to demonstrate that the vector terminology can be applied much more

broadly than simply in the scope of matrices. We begin by making the following definition.
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Definition 1.6.5. We say that a pair (V,+) is a (real) vector space if the following hold.

(1.) We have that u+ v ∈ V for any pair of elements u, v ∈ V.

(2.) We have that (u+ v) + w = u+ (v + w) for any elements u, v, w ∈ V.

(3.) We have that u+ v = v + u for any pair of elements u, v ∈ V.

(4.) We have an element OV ∈ V such that v +OV = v for all elements v ∈ V.

(5.) Given any element v ∈ V, there exists an element −v ∈ V such that v + (−v) = OV .

(6.) We have that αv is an element of V for all (real) scalars α and elements v ∈ V.

(7.) We have that 1v = v for each element v ∈ V.

(8.) We have that α(βv) = (αβ)v for all (real) scalars α and β and elements v ∈ V.

(9.) We have that α(u+ v) = αu+ αv for all (real) scalars α and elements u, v ∈ V.

(10.) We have that (α + β)u = αv + βv for all (real) scalars α and β and each element v ∈ V.

We refer to the elements v ∈ V as (real) vectors in this case.

Combined, the first five properties of Definition 1.6.5 demonstrate that any vector space V

constitutes an abelian group with respect to the addition defined on its elements. Groups form a

central object of study in modern algebra, but we will not concern ourselves with their study here.

Our next example illustrates that the collection of real m×n matrices forms a real vector space.

Example 1.6.6. Consider any positive integers m and n. We denote by Rm×n the collection of all

real m× n matrices. Observe that the following properties hold, hence Rm×n is a real vector space.

(1.) By definition, for any pair of m×n matrices A and B, the matrix sum A+B is the real m×n

matrix whose (i, j)th entry is the sum of the (i, j)th entries of A and B.

(2.) By definition, matrix addition is associative because addition of real numbers is associative.

(3.) Likewise, matrix addition is commutative because addition of real numbers is commutative.

(4.) By Example 1.1.6, the m × n zero matrix Om×n is the unique real m × n matrix with the

property that A+Om×n = A for all real m× n matrices A.

(5.) By Example 1.1.13, for every real m × n matrix A, there exists a unique real m × n matrix

−A such that A+(−A) = Om×n for the m×n zero matrix Om×n. Explicitly, −A is the m×n

matrix whose (i, j)th entry is the (i, j)th entry of A with the opposite sign.

(6.) By the paragraph preceding Example 1.1.13, if A is a real m × n matrix, then we have that

cA is the real m× n matrix whose (i, j)th entry is c times the (i, j)th entry of A.

(7.) Likewise, if A is a real m× n matrix, then we have that 1A = A.

(8.) Even more, if A is a real m× n matrix, then c(dA) = (cd)A for all real numbers c and d.
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(9.) By definition of matrix addition and the paragraph preceding Example 1.1.13, we have that

c(A+B) = cA+ cB for all real numbers c and all real m× n matrices A and B.

(10.) Last, by the paragraph preceding Example 1.1.13, we have that (c + d)A = cA + dA for all

real numbers c and d and all real m× n matrices A.

Example 1.6.7. Consider the collection F (R,R) of real functions f : R → R. We may define

function addition so that if f : R → R and g : R → R are any functions, then f + g is the function

satisfying (f + g)(x) = f(x) + g(x) for all real numbers x, and we may define scalar multiplication

so that (αf)(x) = αf(x). Observe that the following hold, hence F (R,R) is a real vector space.

(1.) Given any functions f : R → R and g : R → R, the function f + g sends a real number x to

the real number f(x) + g(x). Consequently, we have that f + g ∈ F (R,R).

(2.) By definition, function addition is associative because addition of real numbers is associative.

(3.) Likewise, function addition is commutative because addition of real numbers is commutative.

(4.) Consider the function O : R → R defined by O(x) = 0 for all real numbers x. Given any

function f : R → R, we have that (f + O)(x) = f(x) + O(x) + f(x) + 0 = f(x) for all real

numbers x. We conclude therefore that f +O = f, i.e., f +O and f are the same function.

(5.) Given any function f : R → R, we may define the function −f : R → R by (−f)(x) = −f(x).

Observe that (f+(−f))(x) = f(x)−f(x) = 0 = O(x) for all real numbers x and f+(−f) = O.

(6.) Given any function f : R → R and any real number α, it holds that (αf)(x) = αf(x) is a real

number for all real numbers x, from which it follows that αf ∈ F (R,R).

(7.) Given any function f : R → R, we have that (1f)(x) = 1f(x) = f(x) for all real numbers x.

(8.) Given any function f : R → R, we have that α(βf) = (αβ)f for all real numbers α and β:

indeed, we have that (α(βf))(x) = α(βf)(x) = (αβ)f(x) for all real numbers x.

(9.) Given any functions f : R → R and g : R → R, we have that α(f + g) = αf + αg for all real

numbers α because it holds that α(f+g)(x) = α[f(x)+g(x)] = αf(x)+αg(x) = (αf+αg)(x).

(10.) Given any function f : R → R, we have (α + β)f = αf + βf for all real numbers α and β

because it holds that ((α + β)f)(x) = (α + β)f(x) = αf(x) + βf(x) = (αf + βf)(x).

Given any vector OV of a vector space V satisfying property (4.) of Definition 1.6.5, we say that

OV is a zero vector. We demonstrate that a vector space V has one and only one zero vector.

Proposition 1.6.8. Let (V,+) be a vector space. Let OV be a zero vector of V.

1.) Given any vector u ∈ V satisfying that u + v = v for every vector v ∈ V, it must hold that

u = OV . Consequently, the zero vector of a vector space is unique.

2.) We have that 0v = OV for all vectors v ∈ V.
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Proof. (1.) Observe that if u is any vector of V with the property that u+v = v for every vector v of

V, then it holds u+OV = u by definition of a zero vector OV . Conversely, we have that u+OV = OV

by assumption. We conclude therefore that u = u+OV = OV so that u = OV .

(2.) Given any vector v ∈ V, we obtain a vector 0v ∈ V satisfying that 0v = (0+ 0)v = 0v+0v.

Consequently, by properties (2.) and (5.) of Definition 1.6.5, there exists a vector −0v of V such

that 0v = 0v +OV = 0v + [0v + (−0v)] = (0v + 0v) + (−0v) = 0v + (−0v) = OV .

Generally, throughout all of mathematics, one of the primary means of classifying an object is to

study its subobjects. Given any vector space V, we say that a subset W of V is a vector subspace

of V (or simply a subspace of V ) if the ten properties of Definition 1.6.5 hold for W with respect

to the addition and scalar multiplication of V. We provide next a short criterion for subspaces.

Proposition 1.6.9 (Three-Step Subspace Test). Let W be any subset of a vector space (V,+). We

have that (W,+) is a vector subspace of V if and only if the following three properties hold.

(1.) We have that OV is an element of W.

(2.) We have that v + w is an element of W for any pair of vectors v, w ∈ W.

(3.) We have that αw is an element of W for all scalars α and all vectors w ∈ W.

Proof. Certainly, if W is a vector subspace of V, then by Definition 1.6.5, it satisfies the second and

third properties listed above. Even more, we may consider the zero vector OW of W. Considering

that W is a subset of V, we may view OW as an element of V so that OW +OW = OW = OW +OV .

Cancelling OW from both sides of this identity yields that OW = OV , as desired.

Conversely, we will demonstrate that if W is any subset of a vector space V that satisfies the

three properties listed above, then it must satisfy all ten properties of Definition 1.6.5. Considering

that W is a subset of V, it satisfies properties (2.), (3.), and (7.) through (10.); it satisfies properties

(1.), (4.), and (6.) by assumption; hence it suffices to prove that it satisfies property (5.). By the

third property above, we have that −w is an element of W for all vectors w ∈ W ; then, by the

second property above, we have that w+(−w) is an element of W that satisfies w+(−w) = OV .

Example 1.6.10. Consider the real vector space Rm×n of real m×n matrices. Consider the subset

W = {A ∈ Rm×n | the first row of A is zero}. Observe that the m× n zero matrix Om×n lies in W

because the first row of Om×n is zero; the sum of any matrices A and B of W lies in W because the

first row of A + B is the sum of the first row of A and the first row of B, and both of these rows

are zero; and the scalar multiple cA of any matrix A ∈ W lies in W for all real numbers c because

the first row of cA is c times the first row of A, and this is zero because the first row of A is zero.

By the Three-Step Subspace Test, we have that W is a real vector subspace of Rm×n.

Example 1.6.11. Consider the real vector space Rn×n of real n× n matrices. Consider the subset

W = {A ∈ Rn×n | A is symmetric}. Observe that the n× n zero matrix On×n lies in W ; the sum of

any matrices A and B of W lies in W because (A+ B)t = At + Bt by Proposition 1.1.14; and the

scalar multiple cA lies in W for all real numbers c by [Lan86, Exercise 6] on page 47. Consequently,

we conclude that W is a real vector subspace of Rn×n by the Three-Step Subspace Test.
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Example 1.6.12. Consider the real vector space F (R,R) of functions f : R → R and its subset

C1(R) of functions f : R → R such that f ′ is continuous. Clearly, the zero function O : R → R
is continuous. Likewise, the sum of continuous functions is continuous, hence if f ′ and g′ are

continuous, then (f + g)′ = f ′ + g′ is continuous. Last, the scalar multiple of a continuous function

is continuous, hence if f ′ is continuous, then (αf)′ = αf ′ is continuous for all real numbers α. We

conclude that C1(R) is a real vector subspace of F (R,R) by the Three-Step Subspace Test.

Example 1.6.13. Consider the real vector space C1(R) of functions f : R → R such that f ′ is

continuous. Consider the set W = {f ∈ C1(R) | f(0) = 0}. Clearly, the zero function O : R → R
lies in W because it satisfies that O(0) = 0; the sum of any functions f and g of W lies in W

because we have that (f + g)(0) = f(0)+ g(0) = 0+0 = 0; and the scalar multiple αf of a function

f ∈ W satisfies that (αf)(0) = αf(0) = α · 0 = 0, so it must lie in W for all real numbers α. We

conclude that W is a real vector subspace of C1(R) by the Three-Step Subspace Test.

Example 1.6.14. Consider the real vector space Rn×n of real n× n matrices. Consider the subset

W = {A ∈ Rn×n | A is invertible}. Observe that the n×n zero matrix On×n is not invertible, hence

it does not lie in W. By the Three-Step Subspace Test, we conclude that W is not a vector subspace

of Rn×n. Even more, the subset W ′ = {A ∈ Rn×n | A is not invertible} does not constitute a vector

subspace of V : all though the n× n zero matrix Om×n lies in W ′, this set does not satisfy the first

property of Definition 1.6.5 because the n×n identity matrix is the sum of non-invertible matrices.

Using the Three-Step Subspace Test, we furnish even shorter characterizations of a subspace.

Proposition 1.6.15 (Two-Step Subspace Test). Let W be any nonempty subset of a vector space

V. We have that W is a vector subspace of V if and only if the following two properties hold.

(1.) We have that v + w is an element of W for any pair of vectors v, w ∈ W.

(2.) We have that αw is an element of W for all scalars α and all vectors w ∈ W.

Proof. By the Three-Step Subspace Test, if W is a vector subspace of V, then these conditions hold.

Conversely, if the second condition above holds, then it follows that −w is an element of W for all

elements w of W. Likewise, if the first condition holds, then by assumption that W is nonempty, we

have that OV = w + (−w) is an element of W ; we are done by the Three-Step Subspace Test.

Proposition 1.6.16 (One-Step Subspace Test). If W is any nonempty subset of a vector space V,

then W is a subspace of V if and only if αv + βw ∈ W for any vectors v, w ∈ W and scalars α, β.

Proof. By the Two-Step Subspace Test, if W is a vector subspace of V, then these conditions

hold. Conversely, if αv + βw lies in W for any vectors v, w ∈ W and any scalars α and β, then

v + w = 1v + 1v ∈ W and αw = 0v + αw ∈ W ; we are done by the Two-Step Subspace Test.

We will distinguish in our next proposition two very important vector subspaces.

Proposition 1.6.17. Let V be a vector space with vector subspaces U and W.

(1.) Let U +W denote the collection of all vectors u+ w such that u is a vector of U and w is a

vector of W. We have that U +W is a vector subspace of V that contains both U and W.

(2.) Let U ∩W denote the collection of all vectors v such that v is a vector of both U and W. We

have that U ∩W is a vector subspace of V contained in both U and W.

Proof. Use the Three-Step Subspace Test. We leave this as an exercise for the reader.
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1.7 Span and Linear Independence

We will assume throughout this section that V is a (real) vector space. Given any vectors v1, . . . , vn
of V, a linear combination of v1, . . . , vn is any vector of the form α1v1 + · · · + αnvn for some

(real) scalars α1, . . . , αn. We refer to the collection of linear combinations of the vectors v1, . . . , vn
as the span of the vectors v1, . . . , vn, and we write span{v1, . . . , vn} to denote this set. Explicitly,

an element of span{v1, . . . , vn} is of the form α1v1 + · · · + αnvn for some (real) scalars α1, . . . , αn.

We will say that V is generated by the vectors v1, . . . , vn if it holds that V = span{v1, . . . , vn}.
Example 1.7.1. Given any positive integer n, consider the real vector space R1×n of real row

vectors of length n. By [Lan86, Exercise 11] on page 47, every element of R1×n can be written as

x1E1 + · · ·+ xnEn for some real numbers x1, . . . , xn, where Ei is the 1× n row vector consisting of

1 in the ith column and zeros elsewhere. Consequently, it follows that R1×n = span{E1, . . . , En}.
Example 1.7.2. Given any positive integer n, consider the real vector space R2×2 of real 2 × 2

matrices. Let Eij denote the 2×2 matrix whose (i, j)th component is 1 and whose other components

are zero. Observe that every real 2× 2 matrix can be written as a linear combination[
a b

c d

]
=

[
a 0

0 0

]
+

[
0 b

0 0

]
+

[
0 0

c 0

]
+

[
0 0

0 d

]
= aE11 + bE12 + cE21 + dE22

for any real numbers a, b, c, and d. Consequently, it follows that R2×2 = span{E11, E12, E21, E22}.
Example 1.7.3. Given any positive integer n, consider the collection Pn(x) of real polynomials

of degree at most n in indeterminate x. By Example 1.6.7, it follows that Pn(x) is a nonempty

subset of the real vector space C1(R) of real functions whose first derivative is continuous. By the

Two-Step Subspace Test, we conclude that Pn(x) is a real vector space: indeed, the sum of two real

polynomials of degree at most n is a real polynomial of degree at most n, and a real scalar multiple

of any real polynomial of degree at most n is a real polynomial of degree at most n. Observe that

every real polynomial f(x) of degree at most n can be written as f(x) = anx
n + · · ·+ a1x+ a0 for

some real numbers a0, a1, . . . , an, hence we conclude that Pn(x) = span{1, x, . . . , xn}.
We say that a collection of vectors v1, . . . , vn are linearly independent whenever it holds that

α1v1 + · · · + αnvn = OV implies that α1 = · · · = αn = 0, i.e., the only linear combination of

v1, . . . , vn that is the zero vector is the linear combination of all zeros. Conversely, if there exist

scalars α1, . . . , αn not all of which are zero such that α1v1 + · · · + αnvn = 0, then we say that

v1, . . . , vn are linearly dependent. Observe that in this case, there exists a nonzero scalar αi such

that αivi = −α1v1 − · · · − αnvn and vi = −α1α
−1
i v1 − · · · − αnα

−1
i vn, i.e., the vector vi can be

written as a linear combination of the vectors v1, . . . , vn excluding vi. Consequently, any collection

of vectors including OV is linearly dependent, and we restrict our attention to nonzero vectors.

Example 1.7.4. Consider the real 1 × n matrices Ei consisting of 1 in the ith column and zeros

elsewhere. By [Lan86, Exercise 11] on page 47, we have that E1, . . . , En are linearly independent.

Example 1.7.5. Consider the real 2 × 2 matrices Eij whose (i, j)th component is 1 and whose

other components are zero. Observe that if a, b, c, and d are real numbers such that[
0 0

0 0

]
= aE11 + bE12 + cE21 + dE22 =

[
a 0

0 0

]
+

[
0 b

0 0

]
+

[
0 0

c 0

]
+

[
0 0

0 d

]
=

[
a b

c d

]
,

then a = b = c = d = 0. Consequently, it follows that E11, E12, E21, E22 are linearly independent.
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Example 1.7.6. Consider the real polynomials 1, x, x2, x3 of degree at most three. Observe that if

a3x
3 + a2x

2 + a1x+ a0 = 0, then all of the derivatives of this polynomial are zero.

3a3x
2 + 2a2x+ a1 =

d

dx
(a3x

3 + a2x
2 + a1x+ a0) =

d

dx
(0) = 0

6a3x+ 2a2 =
d2

dx2
(a3x

3 + a2x
2 + a1x+ a0) =

d2

dx2
(0) = 0

6a3 =
d3

dx3
(a3x

3 + a2x
2 + a1x+ a0) =

d3

dx3
(0) = 0

Cancelling the factor of six from the last identity 6a3 = 0, we find that a3 = 0. Likewise, the second

derivative of this polynomial is 2a2 = 0 so that a2 = 0. Continuing backwards, we conclude that

a0 = a1 = a2 = a3 = 0. Ultimately, it follows that 1, x, x2, x3 are linearly independent.

Example 1.7.7. Consider the real polynomials 1, x, . . . , xn of degree at most n. Observe that if

there exist real numbers a0, a1, . . . , an such that anx
n+ · · ·+a1x+a0 = 0, then all of the derivatives

of this polynomial are zero. Particularly, the nth derivative of this polynomial is n(n−1) · · · 2an = 0.

Cancelling n(n − 1) · · · 2 from both sides, we find that an = 0. Likewise, the (n − 1)th derivative

of this polynomial is (n− 1)(n− 2) · · · 2an−1 so that an−1 = 0. Continuing backwards, we conclude

that a0 = a1 = · · · = an = 0. Ultimately, it follows that 1, x, . . . , xn are linearly independent.

Example 1.7.8. Often, we will deal with (large) collections of vectors for which it is not obvious

to detect linear independence. Explicitly, consider the vectors v = (1, 1) and w = (−3, 2) of the

real vector space R1×2. By definition, the vectors v and w are linearly independent if and only if

αv+βw = O implies that α = β = 0. Expanding this equation by adding the corresponding columns

of the vectors v and w (i.e., computing the matrix sum), we find that (α, α)+ (−3β, 2β) = (0, 0) or

(α−3β, α+2β) = (0, 0). Observe that this equation can be viewed as the following matrix equation.[
1 −3

1 2

] [
α

β

]
=

[
0

0

]
Explicitly, the matrix on the left-hand side is the matrix whose columns are the vectors v and w;

the scalars α and β are placed in a column vector and multiplied on the right of the matrix created

from the given vectors; and the zero vector O is written as a column vector equal to this matrix

product. Consequently, if the matrix whose columns are v and w is row equivalent to the n × n

identity matrix In×n, then it will follow that α = β = 0, i.e., v and w are linearly independent. By

the method of Gaussian Elimination, we obtain the unique reduced row echelon form as follows.[
1 −3

1 2

]
R2−R1 7→R2∼

[
1 −3

0 5

]
1
5
R2 7→R2∼

[
1 −3

0 1

]
R1+3R2 7→R2∼

[
1 0

0 1

]
We conclude therefore that v = (1, 1) and w = (−3, 2) are linearly independent.

Our previous example gives rise to the following general method for determining all linearly

independent vectors among a collection v1, . . . , vn of real 1×m row vectors.
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Algorithm 1.7.9. Let m and n be positive integers. Consider any real 1×m row vectors v1, . . . , vn.

Use the following steps to find a (not necessarily unique) collection of linearly independent vectors

of largest size among the vectors v1, . . . , vn. (Generally, this will depend on the order of v1, . . . , vn.)

(1.) Construct the real m× n matrix A whose jth column is the m× 1 column vector vtj.

(2.) Use the method of Gaussian Elimination to convert A to its reduced row echelon form.

(3.) Every column of A that contains a pivot corresponds to a 1 ×m row vector that is linearly

independent from all other vectors. Every column that does not possess a pivot corresponds

to a 1×m row vector that can be written as a nonzero linear combination of some vectors.

Proof. Either there is a pivot in the jth column of the unique reduced row echelon form RREF(A)

of the m × n matrix A, or there is not. By definition of the reduced row echelon form, if the jth

column of RREF(A) contains a pivot, then this column must be the real m × 1 matrix Et
i with 1

in row i and zeros elsewhere for some integer 1 ≤ i ≤ j; otherwise, for each integer 1 ≤ i ≤ m such

that the (i, j)th component of RREF(A) is nonzero, there exists an integer 1 ≤ k ≤ j such that the

(i, k)th component of RREF(A) is a pivot of 1. Consequently, the jth column of RREF(A) can be

written as a nonzero linear combination of these column vectors, hence vj is linearly dependent.

Example 1.7.10. We will use Algorithm 1.7.9 to determine the linearly independent vectors among

the real 1 × 3 row vectors v1 = (1, 1, 1), v2 = (−1, 1, 1), v3 = (−1,−1, 1), and v4 = (0, 0, 6). We

must construct the 3 × 4 matrix whose jth column is vtj; then, we must subsequently convert this

matrix into its unique reduced row echelon form. We illustrate this process this as follows.1 −1 −1 0

1 1 −1 0

1 1 1 6

 (1.)∼

1 −1 −1 0

0 2 0 0

0 2 2 6

 (2.)∼

1 −1 −1 0

0 1 0 0

0 2 2 6

 (3.)∼

1 0 −1 0

0 1 0 0

0 0 2 6

 (4.)∼

1 0 0 3

0 1 0 0

0 0 1 3


(1.) We employed the elementary row operations R2 −R1 7→ R2 and R3 −R1 7→ R3.

(2.) We employed the elementary row operation 1
2
R2 7→ R2.

(3.) We employed the elementary row operations R1 +R2 7→ R1 and R3 − 2R2 7→ R3.

(4.) We employed the elementary row operations 1
2
R3 7→ R3 and R1 +R3 7→ R1.

Consequently, the vectors v1, v2, and v3 are linearly independent and v4 = 3v1 + 0v2 + 3v3.

We say that the vectors v1, . . . , vn constitute a basis for the vector space V if and only if

(1.) V = span{v1, . . . , vn}, i.e., V is spanned by v1, . . . , vn and

(2.) v1, . . . , vn are linearly independent, i.e., α1v1+ · · ·+αnvn = 0 if and only if α1 = · · · = αn = 0.

Example 1.7.11. Examples 1.7.1 and 1.7.4 demonstrate that the real 1×n matrices Ei consisting

of 1 in the ith column and zeros elsewhere form a basis for the real vector space R1×n.

Example 1.7.12. Examples 1.7.2 and 1.7.5 demonstrate that the real m×n matrices Eij consisting

of 1 in the (i, j)th component and zeros elsewhere form a basis for the real vector space Rm×n.
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Example 1.7.13. Examples 1.7.3 and 1.7.7 demonstrate that the polynomials 1, x, . . . , xn of degree

at most n form a basis for the real vector space Pn(x) of real polynomials of degree at most n.

Given any basis v1, . . . , vn of a vector space V, by definition, every vector of V can be written as

a linear combination of the vectors v1, . . . , vn. Explicitly, for every vector v ∈ V, there exist scalars

α1, . . . , αn such that v = α1v1 + · · ·+ αnvn. We refer to the scalars α1, . . . , αn as the coordinates

of v with respect to the ordered basis (v1, . . . , vn). Often, we will write the coordinates of a vector

with respect to an ordered basis as the ordered n-tuple (α1, . . . , αn). Conventionally, this is due to

the fact that every point (x1, . . . , xn) in real n-space can be written as x1E1 + · · ·+ xnEn; we have

already seen in Example 1.7.11 that E1, . . . , En form a basis for real n-space, so this terminology is

merely a generalization of the familiar language from vector calculus and geometry. We demonstrate

next that the coordinates of any vector with respect to an ordered basis are unique.

Proposition 1.7.14. Let v1, . . . , vn be linearly independent vectors that lie in some vector space V.

If α1v1+ · · ·+αnvn = β1v1+ · · ·+βnvn, then we must have that α1 = β1, . . . , αn = βn. Consequently,

the coordinates of every vector in the span of v1, . . . , vn are unique (up to arrangement).

Proof. Observe that if α1v1+ · · ·+αnvn = β1v1+ · · ·+βnvn, then subtracting β1v1+ · · ·+βnvn from

both sides and combining like terms gives (α1−β1)v1+ · · ·+(αn−βn)vn = OV . By assumption that

v1, . . . , vn are linearly independent, we conclude that αi − βi = 0 for each integer 1 ≤ i ≤ n.

Example 1.7.15. Consider the real 1× 2 vectors v = (1, 1) and w = (−3, 2) of Example 1.7.8. We

have already demonstrated that these vectors are linearly independent, hence in order to conclude

that they form a basis for the real vector space R1×2, it suffices to prove that they span R1×2. We

will achieve this by finding the coordinates α and β of any vector (a, b) with respect to v and w.

By definition, we seek real numbers α and β that form a solution to the following matrix equation.[
1 −3

1 2

] [
α

β

]
=

[
a

b

]
Example 1.7.8 exhibits elementary row operations to convert the matrix on the left to reduced row

echelon form; to find α and β, we carry out these operations on the following augmented matrix.[
1 −3 a

1 2 b

]
R2−R1 7→R2∼

[
1 −3 a

0 5 b− a

]
1
5
R2 7→R2∼

[
1 −3 a

0 1 1
5
(b− a)

]
R1+3R2 7→R2∼

[
1 0 1

5
(2a+ 3b)

0 1 1
5
(b− a)

]
Consequently, we find that (a, b) = 1

5
(2a+ 3b)(1, 1) + 1

5
(b− a)(−3, 2) for all real numbers a and b.

1.8 Vector Space Dimension

Our first objective in this section is to demonstrate that if some vectors v1, . . . , vn form a basis for

the vector space V, then the non-negative integer n is unique. We refer to this number as the (vector

space) dimension of V, and we write in this case that dim(V ) = n. Essentially, this fact follows

as a corollary of the proposition that states that if some nonzero vectors v1, . . . , vn span the vector

space V, then any collection of linearly independent vectors consists of no more than n vectors.
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Proposition 1.8.1. Let V be a vector space that is spanned by some nonzero vectors v1, . . . , vn.

Given any integer m > n, every collection of nonzero vectors w1, . . . , wm ∈ V is linearly dependent.

Proof. By hypothesis that V is spanned by v1, . . . , vn, for every collection of nonzero vectors

w1, . . . , wm ∈ V, there exist scalars α11, . . . , α1n, . . . , αm1, . . . , αmn such that the following hold.

w1 = α11v1 + · · ·+ α1nvn
...

wm = αm1v1 + · · ·+ αmnvn

Consider the m× n matrix A whose (i, j)th component is αij. We note that A is a nonzero matrix

because at least one of the scalars αij is nonzero. By hypothesis thatm > n, the reduced row echelon

form for A will have (at least) one zero row at the bottom (because it is impossible for a pivot to

exist in row m). Consequently, there exist scalars β1, . . . , βm such that β1w1+· · ·+βmwm = OV .

Corollary 1.8.2. Let V be a vector space. If the vectors v1, . . . , vn and the vectors w1, . . . , wm form

bases for V, then we must have that m = n. Consequently, the dimension of V is well-defined.

Proof. By Proposition 1.8.1, we must have that m ≤ n because V is spanned by v1, . . . , vn and

w1, . . . , wm are linearly independent. Conversely, we must have that n ≤ m because V is spanned

by w1, . . . , wm and v1, . . . , vn are linearly independent. We conclude that m = n, as desired.

Example 1.8.3. By Example 1.7.11, the real 1 × n matrices Ei consisting of 1 in the ith column

and zeros elsewhere form a basis for the real vector space R1×n, hence we have that dim(R1×n) = n.

Example 1.8.4. By Example 1.7.12, the real m × n matrices Eij consisting of 1 in the (i, j)th

component and zeros elsewhere form a basis for the real vector space Rm×n so that dim(Rm×n) = mn.

Example 1.8.5. By Example 1.7.13, the polynomials 1, x, . . . , xn of degree at most n form a basis

for the real vector space Pn(x) of real polynomials of degree at most n, i.e., dim(Pn(x)) = n+ 1.

We have therefore demonstrated that for any vector space V that admits a basis v1, . . . , vn, the

non-negative integer n is unique; it is called the vector space dimension of V, and it is denoted by

dim(V ). Observe that if V is the zero vector space (i.e., the vector space consisting only of the

zero vector), then dim(V ) = 0 because there are no linearly independent vectors in V ; otherwise,

we will soon demonstrate that the dimension of a nonzero vector space is always positive. Before

this, we must understand the following fundamental properties of vector space dimension.

Proposition 1.8.6. If V is a vector space that is spanned by some vectors v1, . . . , vn, then the

dimension of V is the largest positive integer m not exceeding n for which some vectors vi1 , . . . , vim
are linearly independent. Put another way, every collection of generators of V induces a basis of V.

Proof. Consider the largest positive integer m not exceeding n for which some vectors vi1 , . . . , vim
are linearly independent. We may assume these vectors are simply v1, . . . , vm; if they are not, then

we may rearrange the subscripts. By Corollary 1.8.2, it suffices to demonstrate that v1, . . . , vm span

V. Observe that for each integer m+ 1 ≤ k ≤ n, we have that v1, . . . , vm, vk are linearly dependent

by definition of m. Consequently, there exist scalars α1, . . . , αm, αk not all of which are zero such

that α1v1+ · · ·+αmvm+αkvk = OV . Observe that if αk = 0, then α1 = · · · = αm = 0 by assumption
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that v1, . . . , vm are linearly independent, so it must be the case that αk is nonzero. Particularly, we

may solve for vk to find that vk = −α1α
−1
k v1 − · · · − αmα

−1
k vm. Considering that m+ 1 ≤ k ≤ n is

an arbitrary integer, it follows that vm+1, . . . , vn lie in the span of v1, . . . , vm. By hypothesis that V

is spanned by the vectors v1, . . . , vn, for every vector v ∈ V, there exist scalars α1, . . . , αn such that

v = α1v1+· · ·+αnvn. Each of the vectors vm+1, . . . , vn can be replaced by a linear combination of the

vectors v1, . . . , vm, hence every vector of V can be written as a linear combination of v1, . . . , vm.

Proposition 1.8.7. If V is a vector space that admits linearly independent vectors v1, . . . , vn such

that v1, . . . , vn, v are linearly dependent for all vectors v ∈ V, then v1, . . . , vn is a basis for V. Put

another way, the dimension of V is the largest number of linearly independent vectors of V.

Proof. By definition of a basis, it suffices to demonstrate that v1, . . . , vn span V. Given any vector

v ∈ V, there exist scalars α1, . . . , αn, α not all of which are zero and α1v1 + · · · + αnvn + αv = OV

by hypothesis that v1, . . . , vn, v are linearly dependent. On the other hand, the linear independence

of v1, . . . , vn implies that if α = 0, then α1 = · · · = αn = 0. Consequently, we must have that α is

nonzero so that v = α1α
−1v1 + · · ·+ αnα

−1vn. We conclude that V = span{v1, . . . , vn}.

Corollary 1.8.8. Let V be a vector space of finite dimension n. If v1, . . . , vm are linearly independent

vectors in V, then there exist nonzero vectors vm+1, . . . , vn ∈ V such that v1, . . . , vn form a basis for

V. Put another way, every linearly independent subset of V can be extended to a basis of V.

Proof. Begin with a collection of linearly independent vectors v1, . . . , vm. By Proposition 1.8.7, if

v1, . . . , vm, v are linearly dependent for all vectors v ∈ V, then v1, . . . , vm constitute a basis for V ;

otherwise, there exists a nonzero vector vm+1 ∈ V such that v1, . . . , vm+1 are linearly independent.

Continuing in this manner yields nonzero vectors vm+1, . . . , vn ∈ V such that v1, . . . , vn are linearly

independent and v1, . . . , vn, v are linearly dependent for all vectors v ∈ V by Proposition 1.8.1.

Consequently, it follows from Proposition 1.8.7 that v1, . . . , vn form a basis for V, as desired.

Corollary 1.8.9. Let V be a vector space of finite dimension. Let W be a vector subspace of V. We

have that 0 ≤ dim(W ) ≤ dim(V ). Equality holds if and only if W = {OV } or W = V, respectively.

Proof. By Proposition 1.8.7, we have that dim(W ) = 0 if and only if W admits no linearly indepen-

dent vectors if and only if W admits no nonzero vectors if and only if W = {OV }. Consequently,
it suffices to establish that dim(W ) ≤ dim(V ) for every nonzero subspace W of V. Begin with any

nonzero vector w1 ∈ W. By Proposition 1.8.7, if w1 and w are linearly dependent for every vector

w ∈ W, then w1 forms a basis for W ; otherwise, there exists a nonzero vector w2 ∈ W such that w1

and w2 are linearly independent. Continuing in this manner yields nonzero vectors w2, . . . , wm ∈ W

such that w1, . . . , wm are linearly independent and w1, . . . , wm, w are linearly dependent for all vec-

tors w ∈ W. Explicitly, by viewing the vectors w1, . . . , wm, w as elements of V, we may appeal to

Proposition 1.8.1 because V has finite dimension. Consequently, we conclude by Proposition 1.8.7

that the linearly independent vectors w1, . . . , wm form a basis for W and dim(W ) = m. Even more,

we must have that m ≤ dim(V ) by Proposition 1.8.1. Last, if dim(W ) = dim(V ) = n, then a basis

for W must be a basis for V. Explicitly, if there were a basis w1, . . . , wn of W that were not a basis

for V, then there would exist a vector v ∈ V that is not a linear combination of w1, . . . , wn, i.e., the

vectors w1, . . . , wn, v would be linearly independent. But this contradicts Proposition 1.8.7.
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Considering that the preceding four statements are so important, we outline them below. Going

forward, we will say that a vector space is finite-dimensional if and only if it has finite dimension.

Theorem 1.8.10. Let V be a finite-dimensional vector space.

1.) Every collection of vectors that span V can be refined to a basis for V.

2.) Every collection of linearly independent vectors of V can be extended to a basis for V.

3.) Every collection of dim(V ) vectors that span V forms a basis for V.

4.) Every collection of dim(V ) linearly independent vectors of V forms a basis for V.

5.) Every vector subspace W of V admits a basis.

6.) Every vector subspace W of V satisfies that 0 ≤ dim(W ) ≤ dim(V ). Even more, we have that

dim(W ) = 0 if and only if W = {OV } and dim(W ) = dim(V ) if and only if W = V.

Before we conclude this section, we exhibit an example of an infinite-dimensional vector space.

Example 1.8.11. Consider the collection R[x] of real polynomials in indeterminate x. We claim

that R[x] is an infinite-dimensional real vector space. By Example 1.6.7 and the Two-Step Subspace

Test, it follows that R[x] is a real vector space because addition and scalar multiplication of real

polynomials in x yields a real polynomial in x. We claim that the set {1, x, x2, . . . } of all non-

negative integer powers of x forms a basis for R[x]. By Example 1.7.7, the polynomials 1, x, . . . , xn

are linearly independent for each integer n ≥ 0, hence {1, x, x2, . . . } is a linearly independent

collection of vectors; it spans R[x] because every real polynomial in indeterminate x can be written

as anx
n + · · ·+ a1x+ a0 for some integer n ≥ 0. Consequently, the dimension of R[x] is infinite.

1.9 Matrix Rank

Consider any m × n matrix A. Each column of A can be viewed as a m × 1 column vector, hence

it is natural to investigate the span of the column vectors that comprise A. Explicitly, suppose

that A1, . . . , An are the m× 1 column vectors such that Aj corresponds to the jth column of A. By

definition, the span of these column vectors is the collection of all possible linear combinations of the

vectors A1, . . . , An, i.e., we have that span{A1, . . . , An} = {c1A1+· · ·+cnAn | c1, . . . , cn are scalars}.
We will refer to the vector space span{A1, . . . , An} as the column space of A; the dimension of

span{A1, . . . , An} is commonly known as the column rank of A. Crucially, we note that the column

space of A is nothing but the collection of all m × 1 vectors of the form Act, where c is any 1 × n

vector of the form (c1, . . . , cn). Explicitly, we have that Act = c1A1 + · · ·+ cnAn.

Example 1.9.1. Observe that the columns of the real 3×3 identity matrix I3×3 are simply the real

3×1 vectors Et
1, E

t
2, and Et

3 such that E1 = (1, 0, 0), E2 = (0, 1, 0), and E3 = (0, 0, 1). Consequently,

the column space of I3×3 is span{Et
1, E

t
2, E

t
3} = {α1E

t
1 + α2E

t
2 + α3E

t
3 | α1, α2, α3 ∈ R} = R3×1 by

Example 1.7.1. Considering that dim(R3×1) = 3 by Example 1.8.4, the column rank of I3×3 is 3.
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Example 1.9.2. Consider the real 3× 4 matrix of Example 1.7.10 in reduced row echelon form.

A =

1 −1 −1 0

1 1 −1 0

1 1 1 6

 and RREF(A) =

1 0 0 3

0 1 0 0

0 0 1 3


Previously, we illustrated that the column vectors (1, 1, 1)t, (−1, 1, 1)t, and (−1,−1, 1)t are linearly

independent. Considering that R3×1 has dimension three by Example 1.8.4, we conclude by Propo-

sition 1.8.7 that these vectors form a basis for R3×1, hence they form a basis for the column space

of A. Consequently, the column rank of A is three. Likewise, the column rank of RREF(A) is three

by the same rationale because the vectors (1, 0, 0)t, (0, 1, 0)t, and (0, 0, 1)t are linearly independent.

Example 1.9.3. Consider the following real 2× 2 matrix.

A =

[
1 0

1 0

]
By definition, the column space of A is span{(1, 1)t, (0, 0)t} = {α(1, 1)t + β(0, 0)t | α, β ∈ R}.
Considering that β(0, 0)t = (0, 0)t the column space of A is simply span{(1, 1)t} = {(α, α)t | α ∈ R};
it has dimension one, so the column rank of A is one. Observe that the reduced row echelon form

RREF(A) =

[
1 0

0 0

]
for A has column space span{(1, 0)t} = {(α, 0)t | α ∈ R}, hence its column rank is also one.

We demonstrate next that this phenomenon is no coincidence: in fact, the column rank of a

matrix is always equal to the column rank of its unique reduced row echelon form.

Proposition 1.9.4. Every matrix has column rank equal to the column rank of its unique reduced

row echelon form. Put another way, elementary row operations do not affect column rank.

Proof. Consider an m× n matrix A with unique reduced row echelon form R. Let A1, . . . , An and

R1, . . . , Rn denote the columns of A and R, respectively. By definition of the reduced row echelon

form of A, there exists an invertible m×m matrix E such that R = EA. Consequently, it follows by

matrix multiplication that Rj = EAj for each integer 1 ≤ j ≤ n. Observe that if there exist scalars

c1, . . . , cn such that c1R1 + · · ·+ cnRn = O, then multiplying both sides of this vector equation on

the left by E yields that c1A1+ · · ·+cnAn = O. Conversely, if there exist scalars d1, . . . , dn such that

d1A1+ · · ·+dnAn = O, then multiplying both sides of this vector equation on the left by E−1 yields

that d1R1 + · · ·+ dnRn = O. We conclude therefore that the columns Ai1 , . . . , Aik of A are linearly

independent if and only if the columns Ri1 , . . . , Rik are linearly independent. By Proposition 1.8.7

and the definition of column rank, we conclude that the column ranks of A and R are equal.

We may also consider the rows a1, . . . , am of an m × n matrix A, i.e., the 1 × n row vectors ai
corresponding to the ith row of A. We define the row rank of A to be the dimension of the row

space of A, i.e., the vector space span{a1, . . . , am} = {c1a1 + · · ·+ cmam | c1, . . . , cm are scalars}.
Example 1.9.5. Like before, the rows of the real 3 × 3 identity matrix I3×3 are the real 3 × 1

vectors E1 = (1, 0, 0), E2 = (0, 1, 0), and E3 = (0, 0, 1); these vectors are linearly independent, and

they span the three-dimensional space R1×3, so the row space of I3×3 is R1×3.
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Example 1.9.6. Consider the real 3×4 matrix of Example 1.9.1 and its reduced row echelon form.

A =

1 −1 −1 0

1 1 −1 0

1 1 1 6

 and RREF(A) =

1 0 0 3

0 1 0 0

0 0 1 3


Consider the row vectors a1 = (1,−1,−1, 0), a2 = (1, 1,−1, 0), and a3 = (1, 1, 1, 6). Certainly, the

vector a3 is linearly independent of the vectors a1 and a2 because it has a nonzero entry in its fourth

column, and the fourth column of a1 and a2 is zero. Likewise, the vectors a1 and a2 are linearly

independent: indeed, if we take any scalars c1 and c2 such that c1a1 + c2a2 = O, then it follows

that (c1,−c1,−c1, 0) + (c2, c2,−c2, 0) = (0, 0, 0, 0) so that c1 + c2 = 0 and −c1 + c2 = 0. By adding

the first equation to the second, we find that 2c2 = 0 or c2 = 0, from which it follows that c1 = 0.

Ultimately, we conclude that the row rank of A is three, and the row space of A is

span{a1, a2, a3} = {(c1 + c2 + c3,−c1 + c2 + c3,−c1 − c2 + c3, 6c3) | c1, c2, c3 ∈ R}.

Likewise, the row rank of RREF(A) is three because the vectors r1 = (1, 0, 0, 3), r2 = (0, 1, 0, 0),

and r3(0, 0, 1, 3) are linearly independent: indeed, we have that c1r1 + c2r2 + c3r3 = O if and only

if (c1, c2, c3, 3c1 + 3c3) = (0, 0, 0, 0) if and only c1 = c2 = c3 = 0. Last, the row space of RREF(A) is

span{r1, r2, r3} = {(c1, c2, c3, 3c1 + 3c3) | c1, c2, c2 ∈ R}.

Example 1.9.7. Consider the following real 2× 2 matrix of Example 1.9.3.

A =

[
1 0

1 0

]
Observe that the row space of A is span{(1, 0), (1, 0)} = span{(1, 0)} = {α(1, 0) | α ∈ R}; this is

also the row space for the unique reduced row echelon form of A below.

RREF(A) =

[
1 0

0 0

]
Consequently, A and RREF(A) have the same row space, and their row ranks are equal to one.

Like before, the previous examples are illustrative of a more general observation that the row

space of any matrix is equal to the row space of its unique reduced row echelon form.

Proposition 1.9.8. Every matrix has row space equal to the row space of its unique reduced row

echelon form. Consequently, the row rank of a matrix is equal to the row rank of its reduced row

echelon form. Put another way, elementary row operations do not affect row space or row rank.

Proof. Consider an m × n matrix A with unique reduced row echelon form R. Let a1, . . . , am and

r1, . . . , rm denote the rows of A and R, respectively. Certainly, it does not affect the row space of

A to interchange two rows of A because this amounts to relabelling the indices of some row vectors

ai and aj, and the indices of the vectors in the span by definition do not matter. Likewise, taking

a nonzero scalar multiple c of any row ai of A does not affect the span of a1, . . . , am because any

vector c1a1+ · · ·+cmam in the span of a1, . . . , am is now given by c1a1+ · · ·+(c1c
−1)cai+ · · ·+cmam.
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Last, replacing any row aj of A by the linear combination cai + aj for any scalar c and any integer

1 ≤ i ≤ m does not affect the span of a1, . . . , am because any vector c1a1+ · · ·+ cmam in the span of

a1, . . . , am can be achieved as c1a1+ · · ·+(ci− cjc)ai+ · · ·+ cj(cai+aj)+ · · ·+ cmam. Consequently,

every vector in the span of a1, . . . , am lies in the span of r1, . . . , rm. Conversely, every row of R is a

linear combination of some rows of A, hence every vector in the span of r1, . . . , rm lies in the span

of a1, . . . , am. We conclude therefore that span{a1, . . . , am} = span{r1, . . . , rm}, i.e., the row spaces

of A and R are equal. Clearly, now, the row rank of A and the row rank of R are equal.

Corollary 1.9.9. Elementary column operations do not affect column rank.

Proposition 1.9.10. Elementary column operations do not affect row rank.

Proof. By definition of the matrix transpose, elementary column operations on a matrix are equiv-

alent to elementary row operations on the matrix transpose. By Proposition 1.9.4, elementary

row operations on the matrix transpose do not affect the column rank of the matrix transpose, so

elementary column operations on the matrix do not affect the row rank of the matrix.

Proposition 1.9.11. Every matrix can be reduced via a sequence of elementary row and column

operations to a matrix containing the r × r identity matrix in the top left-hand corner and whose

other rows and columns are all zero, where the non-negative integer r is equal to the row rank of

the matrix. Even more, the row rank and the column rank of any matrix are equal.

Proof. Consider an m× n matrix A with unique reduced row echelon form R. Observe that if A is

the zero matrix, then its row rank and column rank are both zero, and the proposition is vacuously

true. Consequently, we may assume that R is nonzero. By definition of the reduced row echelon

form of a matrix, the nonzero rows of R are linearly independent; they span the row space of R,

hence the number of nonzero rows of R is the row rank of R. By Proposition 1.9.8, the row rank

of R is equal to the row rank of A, hence there are precisely r nonzero rows of R, where r is the

row rank of A. Each of the r nonzero rows of R possesses a pivot of 1 in some column, and all

other entries of any column containing a pivot are zero. By successively interchanging the columns

of R, we obtain a matrix with the r × r identity matrix in the top left-hand corner and zeros in

all subsequent rows. By construction of R, there exists a sequence of elementary row operations

that reduce A to R, so in conjunction with the aforementioned column interchanges, we obtain a

sequence of elementary row and column operations that reduces A to a matrix containing the r× r

identity matrix in the top-left hand corner and whose subsequent rows are all zero. Considering

that adding a scalar multiple of one column to another column is an elementary column operation,

we can reduce any nonzero columns strictly to the right of column r to zero. Explicitly, if a is

the (i, j)th component of the matrix and 1 ≤ i ≤ r and r + 1 ≤ j ≤ n, then Cj − cCi 7→ Cj

yields a 0 in the (i, j)th component of the resulting matrix. Each of these is an elementary column

operation, so after a sequence of elementary column operations, we obtain the desired matrix of the

proposition statement. Last, neither elementary row operations nor elementary column operations

affect column rank by Propositions 1.9.4 and 1.9.9, hence the column rank of A is equal to the

column rank of this matrix, which equals the row rank of the matrix, i.e., the row rank of A.

Consequently, by Proposition 1.9.11, the row rank and column rank of any matrix coincide;

their common value is referred to simply as the rank of A. Even more, the previous proposition is

constructive in the sense that it gives a simple recipe to find the rank of a matrix.
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Corollary 1.9.12. The rank of a matrix is equal to the number of pivots of its row echelon form.

Example 1.9.13. Consider the following real 3× 3 matrix.

A =

1 −1 2

2 0 1

1 −1 2


By Corollary 1.9.12, in order to find the rank of A, it suffices to find the row echelon form for A.

We accomplish this by performing elementary row operations on A as follows.1 −1 2

2 0 1

1 −1 2

 R3−R1 7→R3
R2−2R1 7→R2∼

1 −1 2

0 2 −1

0 0 0


We have obtained pivots in rows one and two. Consequently, it follows that the rank of A is two.

1.10 Linear Transformations

We turn our attention next to the structure-preserving functions between vector spaces. Explicitly,

if V and W are vector spaces, then a linear transformation is a function T : V → W such that

1.) T (u+ v) = T (u) + T (v) for all vectors u, v ∈ V and

2.) T (αv) = αT (v) for all vectors v ∈ V and all scalars α.

Conveniently, it is possible to summarize these two linearity conditions as follows.

Proposition 1.10.1. If V and W are vector spaces, then a function T : V → W is a linear

transformation if and only if T (αu+ v) = αT (u) + T (v) for all vectors u, v ∈ V and all scalars α.

Proof. Certainly, if T : V → W is a linear transformation, then by the definition above, it holds

that T (αu+ v) = T (αu) + T (v) = αT (u) + T (v) for all vectors u, v ∈ V and scalars α. Conversely,

if T (αu+ v) = αT (u) + T (v) for all vectors u, v ∈ V and all scalars α, then in particular, we have

that T (OV ) = T (0v + OV ) = 0T (v) + T (OV ) = OW + T (OV ) for every vector v ∈ V. Cancelling

T (OV ) from both sides, we find that T (OV ) = OW . Consequently, it follows that

1.) T (u+ v) = T (1u+ v) = 1T (u) + T (v) = T (u) + T (v) and

2.) T (αu) = T (αu+OV ) = αT (u) + T (OV ) = αT (u) +OW = αT (u)

for all vectors u, v ∈ V and scalars α. Consequently, the claim holds.

Example 1.10.2. Consider the real vector spaces Rm×n of real m × n matrices and Rn×m of real

n ×m matrices for any positive integers m and n. We claim that matrix transposition is a linear

transformation, i.e., we will demonstrate that the function T : Rm×n → Rn×m defined by T (A) = At

is a linear transformation. By Proposition 1.1.14 and [Lan86, Exercise 6] on page 47, we have that

T (cA+B) = (cA+B)t = (cA)t +Bt = cAt +Bt = cT (A) + T (B)

for all real m×n matrices A and B and all scalars c. Consequently, by Corollary 1.10.1, we conclude

that T is a linear transformation, hence matrix transposition is a linear transformation.
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Example 1.10.3. Consider the real vector spaces Rn×r of real n × r matrices and Rm×r of real

m× r matrices for any positive integers m, n, and r. We claim that matrix multiplication is a linear

transformation, i.e., if A is any real m× n matrix, then the function TA : Rn×r → Rm×r defined by

TA(B) = AB is a linear transformation. By Proposition 1.2.6, we have that

TA(cB + C) = A(cB + C) = A(cB) + AC = c(AB) + AC = cTA(B) + TA(C).

We conclude by Corollary 1.10.1 that TA : Rn×r → Rm×r is a linear transformation.

Example 1.10.4. Consider the real vector spaces R1×3 of real 1×3 matrices and R1×2 of real 1×2

matrices. We claim that the function T : R1×3 → R1×2 defined by T (x, y, z) = (x, y) is a linear

transformation called the projection of (x, y, z) into the xy-plane. Observe that

α(x1, y1, z1) + (x2, y2, z2) = (αx1, αy1, αz1) + (x2, y2, z2) = (αx1 + x2, αy1 + y2, αz1 + z2),

hence the image of α(x1, y1, z1) + (x2, y2, z2) under T is (αx1 + x2, αy1 + y2) = α(x1, y1) + (x2, y2).

Considering that this is αT (x1, y1, z1)+T (x2, y2, z2), we conclude that T is a linear transformation.

Example 1.10.5. Consider the real vector space P1(x) of real linear polynomials. Explicitly, we

have that P1(x) = {mx+b | m and b are real numbers}, hence every element of P1(x) is graphically

represented by a line in the Cartesian plane. Consider the function D : P1(x) → P1(x) defined by

D(mx+ b) = m. Explicitly, the function D maps a polynomial to its first derivative. Observe that

α(m1x+ b1) + (m2x+ b2) = αm1x+ αb1 +m2x+ b2 = (α1m1 +m2)x+ (b1 + b2),

and the derivative of this function is αm1 +m2 = αD(m1x+ b1) +D(m2x+ b2). Consequently, the

derivative is a linear transformation from the real vector space P1(x) to itself.

Example 1.10.6. Consider the real vector spaces R of the real numbers and R2×2 of real 2 × 2

matrices. Consider the determinant function det : R2×2 → R defined by

det

[
a b

c d

]
= ad− bc.

We claim that the determinant is not a linear transformation. Explicitly, for any real 2× 2 matrix

A and any real number c, we have that det(cA) = c2 det(A). Consider any two real 2× 2 matrix

A =

[
a11 a12
a21 a22

]
.

By definition of scalar multiplication, for any scalar c, we have that

cA =

[
ca11 ca12
ca21 ca22

]
.

By definition of the determinant det(A) and det(cA), it follows that

det(cA) = det

[
ca11 ca12
ca21 ca22

]
= c2a11a22 − c2a12a21 = c2(a11a22 − a12a21) = c2 det(A).

Consequently, the determinant is not a linear transformation.
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Example 1.10.7. Consider the real vector space C0(R) of continuous functions f : R → R. By the

Fundamental Theorem of Calculus, for every function f ∈ C0(R), there exists a function F ∈ C1(R)
such that F ′(x) = f(x); we refer to F ′(x) as an antiderivative of f(x). Observe that for any

antiderivative F (x) of f(x), we have that G(x) = F (x) + C is an antiderivative of f(x) for all real

numbers C. Consequently, the function A : C0(R) → C1(R) defined by A(f) = F is not a linear

transformation. Explicitly, every real number is an antiderivative of the zero function.

Conversely, if a is any real number, then we may define a function Ra : C0(R) → C1(R) by

declaring that Ra(f) =
∫ x

a
f(t) dt. We note that Ra is a linear transformation: indeed, we have that

Ra(αf + g) =

∫ x

a

[αf(t) + g(t)] dt = α

∫ b

a

f(t) dt+

∫ b

a

g(t) dt = αRa(f) +Ra(g).

We collect in the next proposition two useful properties of linear transformations.

Proposition 1.10.8. Let T : V → W be a linear transformation of the vector spaces V and W.

1.) We have that T (α1v1 + · · · + αnvn) = α1T (v1) + · · · + αnT (vn) for all vectors v1, . . . , vn ∈ V

and scalars α1, . . . , αn. Put another way, the image of a linear combination of vectors under

a linear transformation is the linear combination of the images of the vectors.

2.) We have that T (OV ) = OW , where OV and OW are the respective zero vectors of V and W.

Proof. We prove the first property by the Principle of Mathematical Induction applied to the number

of vectors n. By definition of a linear transformation, the claim holds for n = 1. We will assume

inductively that T (α1v1 + · · ·+ αnvn) = α1T (v1) + · · ·+ αnT (vn) for all vectors v1, . . . , vn ∈ V and

scalars α1, . . . , αn. By definition of a linear transformation, we have that

T (α1v1 + · · ·+ αnvn + αn+1vn+1) = T (α1v1 + · · ·+ αnvn) + T (αn+1vn+1).

By hypothesis, the first summand is equal to α1T (v1) + · · · + αnT (vn), from which it follows that

T (α1v1 + · · ·+ αnvn + αn+1vn+1) = α1T (v1) + · · ·+ αnT (vn) + αn+1T (vn+1), as desired.

On the matter of the second property, we use the linearity of the function T to first illustrate

that T (OV +OV ) = T (OV )+T (OV ). On the other hand, it holds that OV +OV = OV , hence we have

that T (OV ) + T (OV ) = T (OV +OV ) = T (OV ). Cancelling T (OV ) yields that T (OV ) = OW .

By Example 1.6.7, the collection of real functions f : R → R that have a continuous first

derivative constitutes a real vector space; however, with a view toward linear algebra, there is

nothing particularly special about real functions whose first derivative is continuous. Even more,

one can prove that the collection of real functions f : R → R forms a real vector space by the same

rationale as provided in the aforementioned example. Generalizing this idea, our next proposition

states that the collection of all linear transformations between vector spaces is itself a vector space.

Eventually, vector spaces of linear transformations will come to occupy much of our attention.

Proposition 1.10.9. Let V and W be vector spaces. Let L(V,W ) denote the collection of all linear

transformations from V to W, i.e., L(V,W ) = {T : V → W | T is a linear transformation}. We

have that L(V,W ) is a vector space with respect to function addition and scalar multiplication.

Proof. We must verify each of the ten axioms of a vector space from Definition 1.6.5.
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(1.) Observe that if S : V → W and T : V → W are linear transformations, then S + T : V → W

is the function defined by (S + T )(v) = S(v) + T (v) for all vectors v ∈ V. By hypothesis that

S and T are linear transformations, for all vectors u, v ∈ V and all scalars α, it follows that

(S + T )(αu+ v) = S(αu+ v) + T (αu+ v)

= αS(u) + S(v) + αT (u) + T (v)

= α(S(u) + T (u)) + (S(v) + T (v))

= α(S + T )(u) + (S + T )(v).

We conclude by Corollary 1.10.1 that S + T : V → W is a linear transformation.

(4.) Consider the function O : V → W defined by O(v) = OW for all vectors v ∈ V. Observe that

for every vector v ∈ V, we have that (T + O)(v) = T (v) + O(v) = T (v) + OW = T (v), hence

we conclude that T +O = T. Even more, O is a linear transformation.

(5.) Given any linear transformation T : V → W, consider the function −T : V → W. We have

that (T + (−T ))(v) = T (v) − T (v) = OW for all vectors v ∈ V, from which it follows that

T + (−T ) = O. Even more, −T is a linear transformation by assumption that T is linear.

(6.) Last, if T : V → W is any linear transformation, then the function αT : V → W defined in

the obvious way is a linear transformation because T is a linear transformation.

Each of the remaining six vector space axioms is self-evident: by definition, for every vector v ∈ V,

we have that T (v) is a vector of W, hence function addition is associative and commutative because

it is essentially vector addition. Likewise, scalar multiplication is associative and distributive.

Example 1.10.10. Consider the real vector space of real numbers R. By definition, we have that

L(R,R) is the real vector space of linear transformations T : R → R. Consequently, the elements of

L(R,R) are functions T : R → R that satisfy that T (x+ y) = T (x) + T (y) and T (αx) = αT (x) for

all real numbers x, y, and α. Observe that if T (αx) = αT (x), then in particular, we must have that

T (x) = T (x · 1) = xT (1) for all real numbers x. Consequently, the elements of L(R,R) are precisely
the lines through the origin in R2, i.e., we have that L(R,R) = {mx | m ∈ R}.

1.11 Kernels and Images of Linear Transformations

Considering that a linear transformation T : V → W between two vector spaces V and W is nothing

more than a linear function, it is natural to ask about the vectors of V that are mapped to the zero

vector of W under T. Explicitly, we will consider the kernel of the linear transformation

ker(T ) = {v ∈ V | T (v) = OW}.

Once again, the kernel of the linear transformation T : V → W is nothing more than the set of

all vectors of V that result in the zero vector of W when we apply the linear transformation T to

them. Our first order of business is to demonstrate that ker(T ) is a vector subspace of V.
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Proposition 1.11.1. If T : V → W is a linear transformation of vector spaces V and W, then the

kernel ker(T ) = {v ∈ V | T (v) = OW} of T is a subspace of V.

Proof. By the Three-Step Subspace Test, it suffices to prove the following three properties.

(1.) By the second part of Proposition 1.10.8, we have that T (OV ) = OW so that OV ∈ ker(T ).

(2.) Consider two vectors u, v ∈ ker(T ). By definition of the kernel, we have that T (u) = OW and

T (v) = OW , hence the linearity of T yields that T (u+ v) = T (u) + T (v) = OW +OW = OW .

We conclude that u+ v lies in the kernel of T.

(3.) Last, if v ∈ ker(T ) and α is any scalar, then T (αv) = αT (v) = αOW = OW because T is a

linear transformation and T (v) = OW ; this demonstrates that αv ∈ ker(T ).

Example 1.11.2. Consider the linear transformation T : Rm×n → Rn×m of Example 1.10.2 defined

by T (A) = At. By definition, we have that ker(T ) = {A ∈ Rm×n | At = T (A) = On×m}. But if it
holds that At = On×m, then we must have that A = Om×n so that ker(T ) = {Om×n}.

Example 1.11.3. Observe that if A is any real m×n matrix, then the function TA : Rn×r → Rm×r

of Example 1.10.3 defined by TA(B) = AB is a linear transformation; its kernel is given by

ker(TA) = {B ∈ Rn×r | AB = TA(B) = Om×r}.

Consequently, if A is invertible, then AB = On×r if and only if B = A−1(AB) = A−1On×r = On×r.

Put another way, the kernel of TA for an invertible real n× n matrix A is ker(TA) = {On×r}.
Concretely, let us find the kernel of TA for the following real 2× 2 matrix.

A =

[
1 −1

−1 1

]
By definition, a real 2× 2 matrix B is in the kernel of TA if and only if TA(B) is the zero matrix if

and only if the matrix product AB is the zero matrix, i.e., we have that[
a b

c d

]
∈ ker(TA) if and only if

[
a− c b− d

−a+ c −b+ d

]
=

[
1 −1

−1 1

] [
a b

c d

]
=

[
0 0

0 0

]
if and only if a− c = 0 and b− d = 0 and −a+ c = 0 and −b+ d = 0 if and only if a = c and b = d.

Consequently, the kernel of TA consists precisely of those 2× 2 matrices of the form[
a b

a b

]
=

[
a 0

a 0

]
+

[
0 b

0 b

]
= a

[
1 0

1 0

]
+ b

[
0 1

0 1

]
= a(E11 + E21) + b(E12 + E22).

We conclude therefore that ker(TA) = span{E11 + E21, E12 + E22}.

Example 1.11.4. Consider the linear transformation T : R1×3 → R1×2 of Example 1.10.4 defined

by T (x, y, z) = (x, y), i.e., the projection of (x, y, z) into the xy-plane. We have that

ker(T ) = {(x, y, z) ∈ R1×3 | (x, y) = T (x, y, z) = (0, 0)} = {(0, 0, z) | z ∈ R} = span{(0, 0, 1)}.
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Example 1.11.5. Consider the differentiation transformationD : P1(x) → P1(x) of Example 1.10.5

defined by D(mx+ b) = m. Observe that a polynomial mx+ b lies in the kernel of D if and only if

D(mx + b) = 0 if and only if m = 0, i.e., ker(D) = {mx + b | m = 0} = {b | b ∈ R} consists of all

constant functions on R. We note that this agrees with our intuition: by the Fundamental Theorem

of Calculus, the derivative of any function is zero if and only if the function is constant.

We are especially interested in those linear transformations T : V → W with ker(T ) = {OV }.
We will say that T : V → W is injective if and only if T (v1) = T (v2) implies that v1 = v2.

Proposition 1.11.6. If T : V → W is a linear transformation of vector spaces V and W, then T is

injective if and only if ker(T ) = {OV }. Explicitly, ker(T ) measures the failure of T to be injective.

Proof. We will assume first that T : V → W is injective. Consider any vector v ∈ ker(T ). By the

definition of ker(T ), we have that T (v) = OW = T (OV ). By assumption that T is injective, we

conclude that v = OV and ker(T ) = {OV }. Conversely, suppose that ker(T ) = {OV }. Given any

vectors v1, v2 ∈ V such that T (v1) = T (v2), we must have that OW = T (v1) − T (v2) = T (v1 − v2)

by the linearity of T. Consequently, we have that v1 − v2 ∈ ker(T ), from which it follows that

v1 − v2 = OV . By adding v2 to both sides of this identity, we conclude that v1 = OV + v2 = v2.

Example 1.11.7. By Example 1.11.2, matrix transposition is an injective linear transformation.

Example 1.11.8. By Example 1.11.3, left-multiplication by an invertible (real) n×n matrix is an

injective linear transformation from the vector space of (real) n× r matrices to itself.

Even more, we demonstrate in the next proposition that the linear transformations that preserve

linear independence are precisely the injective linear transformations.

Proposition 1.11.9. If T : V → W is a linear transformation of vector spaces V and W, then the

following statements are equivalent.

1.) If v1, . . . , vn are linearly independent, then T (v1), . . . , T (vn) are linearly independent.

2.) We have that ker(T ) = {OV }, i.e., T is injective.

Put another way, a linear transformation is injective if and only if it preserves linear independence.

Proof. We will assume first that if v1, . . . , vn are linearly independent, then T (v1), . . . , T (vn) are

linearly independent. Consider any vector v ∈ ker(T ). By definition of the kernel, we have that

T (v) = OW , hence T (v) is not linearly independent; this implies that v is not linearly independent,

hence we must have that v = OV and ker(T ) = {OV }. Conversely, suppose that ker(T ) = {OV }.
Given any linearly independent vectors v1, . . . , vn of V, consider any scalars α1, . . . , αn such that

α1T (v1) + · · ·+ αnT (vn) = OW . By the first part of Proposition 1.10.8, we have that

OW = α1T (v1) + · · ·+ αnT (vn) = T (α1v1 + · · ·+ αnvn)

so that α1v1 + · · · + αnvn lies in ker(T ). By hypothesis that ker(T ) = {OV }, we must have that

α1v1 + · · ·+ αnvn; then, the linear independence of v1, . . . , vn yields that α1 = · · · = αn = 0.
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Conversely, we may consider the collection of all possible images T (v) of the vectors v of V

under a linear transformation T : V → W. Explicitly, we refer to this as the range

range(T ) = {w ∈ W | w = T (v) for some vector v ∈ V } = {T (v) | v ∈ V }

of the linear transformation. Occasionally, we will write T (V ) = {T (v) | v ∈ V } to emphasize that

the linear transformation is acting on vectors of the vector space V. Under this identification, we

may also define T−1(U) = {v ∈ V | T (v) ∈ U} for any vector subspace U of W ; we refer to T−1(U)

as the pre-image (or inverse image) of U under T. Like with the kernel of a linear transformation,

it is true that the range of a linear transformation is a subspace of the target space W.

Proposition 1.11.10. If T : V → W is a linear transformation of vector spaces V and W, then

the range range(T ) = {T (v) | v ∈ V } of T is a subspace of W.

Proof. Once again, we must verify the following conditions of the Three-Step Subspace Test.

(1.) By the second part of Proposition 1.10.8, we have that T (OV ) = OW so that OW ∈ range(T ).

(2.) Consider any vectors w, x ∈ range(T ). By definition of range(T ), there exist vectors u, v ∈ V

such that w = T (u) and x = T (v). By assumption that T is a linear transformation, we find

that w + x = T (u) + T (v) = T (u + v). Considering that u and v are vectors of the vector

space V, their sum u+ v is also a vector of V, from which it follows that w + x ∈ range(T ).

(3.) Last, for any vector w ∈ range(T ) and any scalar α, then there exists a vector v ∈ V such that

αw = αT (v) = T (αv). Like before, we find that αv lies in V so that αw lies in range(T ).

Example 1.11.11. Consider the linear transformation T : Rm×n → Rn×m of Example 1.10.2 defined

by T (A) = At. By definition, we have that range(T ) = {At | A ∈ Rm×n}. Considering that any

n×m matrix B can be written as (Bt)t and Bt is an m×n matrix, it follows that range(T ) = Rn×m.

Example 1.11.12. Given any real m× n matrix A, as in Example 1.10.3, we may define a linear

transformation TA : Rn×r → Rm×r. We have that range(TA) = {AB | B ∈ Rn×r}. Observe that if

m = n and A is an invertible real n× n matrix, then for every real n× r matrix C, we have that

C = In×nC = (AA−1)C = A(A−1C) = TA(A
−1C).

Consequently, in this case, every real n × r matrix C is the image of the real n × r matrix A−1C

under the linear transformation TA, from which it follows that range(TA) = Rn×r.

Example 1.11.13. Consider the linear transformation T : R1×3 → R1×2 of Example 1.10.4 defined

by T (x, y, z) = (x, y). We have that range(T ) = {(x, y) | x, y ∈ R} = R1×2.

Example 1.11.14. Consider the differentiation transformation D : P1(x) → P1(x) of Example

1.10.5 defined by D(mx + b) = m. Observe that range(D) = {m | m ∈ R} consists of all constant

functions on R. Coincidentally, it holds that range(T ) = ker(T ); this is not typically true.

We will say that a linear transformation T : V → W is surjective if it holds that range(T ) = W.

Consequently, the range of T measures the degree to which T is surjective. We illustrate next that

surjective linear transformations are exactly those that preserve the span of a collection of vectors.
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Proposition 1.11.15. If T : V → W is a linear transformation of finite-dimensional vector spaces

V and W, then the following statements are equivalent.

1.) If V = span{v1, . . . , vn}, then W = span{T (v1), . . . , T (vn)}.

2.) We have that range(T ) = W, i.e., T is surjective.

Put another way, a linear transformation is surjective if and only if it preserves spanning sets.

Proof. By assumption that V is a finite-dimensional vector space, there exist vectors v1, . . . , vn ∈ V

such that V = span{v1, . . . , vn}. Consequently, if the first statement of the proposition holds, then

W = span{T (v1), . . . , T (vn)}. By definition, for every vector w ∈ W, there exist scalars α1, . . . , αn

such that w = α1T (v1) + · · ·+αnT (vn) = T (α1v1 + · · ·+αnvn). Considering that α1v1 + · · ·+αnvn
lies in V, we conclude that range(T ) = W, hence T is surjective. Conversely, if T is surjective,

then for every vector w ∈ W, there exists a vector v ∈ V such that w = T (v). By hypothesis

that V = span{v1, . . . , vn}, there exist scalars α1, . . . , αn such that v = α1v1 + · · · + αnvn and

w = T (v) = T (α1v1+ · · ·+αnvn) = α1T (v1)+ · · ·+αnT (vn), i.e., W = span{T (v1), . . . , T (vn)}.

We demonstrate next that linear transformations preserve vector subspaces.

Proposition 1.11.16. Let T : V → W be a linear transformation of vector spaces V and W.

1.) If U is a subspace of V, then T (U) is a subspace of W.

2.) If U is a subspace of W, then T−1(U) is a subspace of V.

Proof. We proceed by the Three-Step Subspace Test. Observe that if U is a subspace of V, then it

holds that OV ∈ U so that T (OV ) = OW lies in T (U). Even more, if T (u) and T (v) are any vectors

in T (U), then their sum T (u) + T (v) = T (u+ v) lies in T (U) because u+ v lies in U. Last, if T (u)

is any vector in T (U) and α is any scalar, then αT (u) = T (αu) lies in T (U) because αu lies in U.

Likewise, if U is a subspace ofW, then we have that T (OV ) = OW ∈ U so that OV lies in T−1(U).

Given any vectors u, v ∈ T−1(U), by definition, there exist vectors w, x ∈ U such that T (u) = w and

T (v) = x. By assumption that U is a subspace of W, it follows that w+x = T (u)+T (v) = T (u+v)

lies in U, hence we conclude that u+v lies in T−1(U). Like before, if u is an element of T−1(U), then

T (αu) = αT (u) lies in U because T (u) lies in the subspace U of W, hence αu lies in T−1(U).

Before we conclude this section, we prove a result whose importance in practice cannot be under-

stated. Briefly stated, the following proposition ensures that we may define a linear transformation

T : V → W uniquely by declaring the images T (vi) for all basis vectors vi of V under T ; the image

of any ordinary vector v ∈ V is then determined by extending linearly according to the unique

expression v = α1v1 + · · ·+ αnvn of v in terms of some of these basis vectors.

Proposition 1.11.17. Every linear transformation of vector spaces is uniquely determined by the

images of any basis for the domain space. Explicitly, if S : V → W and T : V → W are linear

transformations of vector spaces V and W such that S(vi) = T (vi) for all vectors vi of a basis for V,

then it must hold that S(v) = T (v) for all vectors v ∈ V, i.e., S and T must be the same function.

Proof. Every vector v ∈ V can be written uniquely as v = α1v1 + · · · + αnvn for some basis

vectors v1, . . . , vn and scalars α1, . . . , αn. Consequently, if S(vi) = T (vi) for all basis vectors vi, then

S(α1v1+ · · ·+αnvn) = αS(v1)+ · · ·+αS(vn) = α1T (v1)+ · · ·+αnT (vn) = T (α1v1+ · · ·+αnvn).
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1.12 The Rank-Nullity Theorem

Given any linear transformation T : V → W of vector spaces V and W, we obtain two vector spaces

ker(T ) = {v ∈ V | T (v) = OW} ⊆ V and range(T ) = {T (v) | v ∈ V } ⊆ W called the kernel and the

range of T, respectively. Previously, we showed that ker(T ) measures the failure of T to be injective

and that range(T ) measures the degree to which T is surjective. Even more, we noticed that T is

injective if and only if it preserves linear independence, and likewise, T is surjective if and only if

it preserves spanning sets. Consequently, if T is bijective (i.e., it is injective and surjective), then

T preserves linear independence and spanning sets, hence it preserves bases.

Proposition 1.12.1. If T : V → W is a linear transformation of finite-dimensional vector spaces

V and W, then the following statements are equivalent.

1.) If v1, . . . , vn form a basis for V, then T (v1), . . . , T (vn) form a basis for W.

2.) We have that T is bijective, i.e., it is injective and surjective.

Ultimately, we will come to find that a bijective linear transformation T : V → W encodes many

desirable properties of the vector spaces V and W : in some sense, the existence of a bijective linear

transformation between vector spaces V and W implies that V and W are “indistinguishable” other

than by the “labels” of the vectors. We will elaborate on this property in due time.

One other way to measure certain properties of a linear transformation T : V → W is to find

the dimensions of its kernel and range, i.e., the nullity nullity(T ) = dim(ker(T )) and the rank

rank(T ) = dim(range(T )) of T. Often, this data provides a sufficient measure of the properties of

T and will be preferable to the detailed information of the entire kernel or range of T.

Example 1.12.2. Consider the transposition transformation T : Rm×n → Rn×m of Examples

1.11.2 and 1.11.11 defined by T (A) = At. Previously, we demonstrated that range(T ) = Rn×m,

hence we have that rank(T ) = dim(Rn×m) = mn = dim(Rm×n). On the other hand, we have that

ker(T ) = {Om×n} so that nullity(T ) = 0 and dim(Rm×n) = rank(T ) + nullity(T ).

Example 1.12.3. Given any real m × n matrix A, as in Examples 1.11.3 and 1.11.12, we may

define a linear transformation TA : Rn×r → Rm×r. Like before, if we assume that m = n and A is

an invertible real n× n matrix, then range(TA) = Rn×r so that rank(TA) = nr and nullity(TA) = 0.

Once again, in this case, we have that dim(Rn×r) = nr = rank(TA) + nullity(TA).

Example 1.12.4. Consider the linear transformation T : R1×3 → R1×2 of Examples 1.11.4 and

1.11.13 defined by T (x, y, z) = (x, y). We have that range(T ) = R1×2 and ker(T ) = span{(0, 0, 1)}
so that rank(T ) = 2 and nullity(T ) = 1 and dim(R1×3) = 3 = rank(T ) + nullity(T ).

Example 1.12.5. Consider the differentiation transformation D : P1(x) → P1(x) of Examples

1.11.5 and 1.11.14 defined by D(mx + b) = m. We showed before that range(T ) = ker(T ) = R,
hence we have that rank(T ) = ker(T ) = dim(R) = 1. Considering that the real polynomials 1 and

x form a basis for P1(x), we find that dim(P1(x)) = 2 = rank(T ) + nullity(T ).

Our main results of this section establish that the previous examples are illustrative of a more

general relationship between the rank and nullity of a linear transformation.

Proposition 1.12.6. If T : V → W is a linear transformation of vector spaces V and W, the linearly

independent vectors of range(T ) induce linearly independent vectors of V, i.e., rank(T ) ≤ dim(V ).
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Proof. Given any vectors v1, . . . , vn ∈ V, if α1, . . . , αn are scalars such that α1v1 + · · ·+αnvn = OV ,

then OW = T (OV ) = T (α1v1+· · ·+αnvn) = α1T (v1)+· · ·αnT (vn). Consequently, if T (v1), . . . , T (vn)

are linearly independent in W, then we must have that α1 = · · · = αn = 0, hence v1, . . . , vn are

linearly independent. Ultimately, this shows that if T (v1), . . . , T (vn) form a basis for range(T ), then

v1, . . . , vn are linearly independent in V, hence we conclude that range(T ) = n ≤ dim(V ).

Theorem 1.12.7 (Rank-Nullity Theorem). If T : V → W is a linear transformation of finite-

dimensional vector spaces V and W, then it holds that dim(V ) = rank(T ) + nullity(T ).

Proof. Observe that if ker(T ) = {OV }, i.e., if T is injective, then by Proposition 1.11.9, we have

that dim(V ) ≤ rank(T ). Conversely, by Proposition 1.12.6, it always holds that dim(V ) ≥ rank(T ),

hence in this case, we conclude that dim(V ) = rank(T ) = rank(T ) + 0 = rank(T ) + nullity(T ).

Consequently, we may assume that there exists a nonzero vector v1 ∈ ker(T ). By Theorem 1.8.10,

there exist vectors v2, . . . , vr ∈ ker(T ) such that v1, . . . , vr form a basis for ker(T ); likewise, there

exist vectors vr+1, . . . , vn ∈ V such that v1, . . . , vr, vr+1, . . . , vn form a basis for V. We claim that

T (vr+1), . . . , T (vn) form a basis for range(T ). Every vector v of V can be written as

v = α1v1 + · · ·+ αrvr + αr+1vr+1 + · · ·+ αnvn

for some scalars α1, . . . , αr, αr+1, . . . , αn, hence every vector of range(T ) can be written as

T (v) = T (α1v1 + · · ·+ αrvr + αr+1vr+1 + · · ·+ αnvn).

By the linearity of T, this above expression can be expanded to the following.

T (v) = α1T (v1) + · · ·+ αrT (vr) + αr+1T (vr+1) + · · ·+ αnT (vn)

By assumption that v1, . . . , vr lie in ker(T ), it follows that every vector of W can be written as

αr+1T (vr+1) + · · · + αnT (vn); this in turn implies that range(T ) = span{T (vr+1), . . . , T (vn)}. We

must demonstrate next that T (vr+1), . . . , T (vn) are linearly independent in W. Given any scalars

αr+1, . . . , αn such that OW = αr+1T (vr+1)+ · · ·+αnT (vn) = T (αr+1vr+1+ · · ·+αnvn), we have that

αr+1vr+1 + · · ·+ αnvn lies in ker(T ). Consequently, there exist scalars α1, . . . , αr such that

αr+1vr+1 + · · ·+ αnvn = α1v1 + · · ·+ αrvr.

By subtracting the right-hand side from the left-hand side, we obtain a relation of linear dependence

−α1v1 − · · · − αrvr + αr+1vr+1 + · · · + αnvn = OV . Considering that v1, . . . , vr, vr+1, . . . , vn form a

basis for V, they are linearly independent so that α1 = · · · = αr = αr+1 = · · · = αn = 0.

Corollary 1.12.8. If T : V → W is a linear transformation of finite-dimensional vector spaces V

and W such that dim(V ) = dim(W ), then the following statements are equivalent.

1.) We have that T is injective.

2.) We have that nullity(T ) = 0.

3.) We have that rank(T ) = dim(W ).
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4.) We have that T is surjective.

Proof. We will assume first that T is injective. By Proposition 1.11.6 and the definition of nullity,

we have that nullity(T ) = 0. By the Rank-Nullity Theorem, if nullity(T ) = 0, then we conclude that

dim(W ) = dim(V ) = rank(T ). Even more, if it holds that rank(T ) = dim(W ), then range(T ) is a

subspace of W of the same dimension as W, hence we must have that W = range(T ) by Propositions

1.11.10 and 1.8.9. Last, if T is surjective, then range(T ) = W by definition, from which it follows

that rank(T ) = dim(W ) = dim(V ). By the Rank-Nullity Theorem, once again, we conclude that

nullity(T ) = 0; this condition is equivalent to ker(T ) = {OT}, i.e., T is injective.

1.13 Composition and Inversion of Linear Transformations

Given any linear transformations S : U → V and T : V → W of vector spaces U, V, and W, we may

define the composite function T ◦ S : U → W by declaring that (T ◦ S)(u) = T (S(u)) holds for

all vectors u ∈ U, where S(u) is by definition a vector of V ; it is a linear transformation.

Proposition 1.13.1. If S : U → V and T : V → W are linear transformations of vector spaces U,

V, and W, then the composite function T ◦ S : U → W is a linear transformation.

Proof. We must establish that (T ◦S)(αu+v) = α(T ◦S)(u)+(T ◦S)(v) for all vectors u, v ∈ U and

all scalars α. By definition, we have that (T ◦S)(αu+v) = T (S(αu+v)). Considering that S : U → V

is a linear transformation, it follows by definition that S(αu+ v) = S(αu) + S(v) = αS(u) + S(v).

Consequently, we find that (T ◦ S)(αu + v) = T (αS(u) + S(v). By the linearity of T, we conclude

that (T ◦S)(αu+ v) = T (αS(u)) + T (S(v)) = αT (S(u)) + T (S(v)) = α(T ◦S)(u) + (T ◦S)(v).

Example 1.13.2. Consider the linear transformations S : R1×3 → R1×2 and T : R1×2 → R1×1

defined by S(x, y, z) = (x, y) and T (x, y) = (x). Put another way, S is the projection of a point

in three-space into the xy-plane and T is the projection of a point in the Cartesian plane onto the

x-axis. We have that (T ◦ S)(x, y, z) = T (S(x, y, z)) = T (x, y) = (x), hence T ◦ S can be viewed as

the projection of a point in three-space onto the x-axis.

Example 1.13.3. Consider the differentiation transformation D : P3(x) → P2(x) from the real

polynomials of degree at most three to the real polynomials of degree at most two that sends a

polynomial to its first derivative. Explicitly, we have that D(ax3 + bx2 + cx+ d) = 3ax2 + 2bx+ c.

We know from Calculus I (or Example 1.10.5) that differentiation is a linear transformation because

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x) and

d

dx
[αf(x)] = α

d

dx
f(x)

for all real functions f(x) and g(x) and all real numbers α. Observe that

(D ◦D)(ax3 + bx2 + cx+ d) = D(3ax2 + 2bx+ c) = 6ax+ 2b,

(D ◦D ◦D)(ax3 + bx2 + cx+ d) = D(6ax+ 2b) = 6a, and

(D ◦D ◦D ◦D)(ax3 + bx2 + cx+ d) = D(6a) = 0,

hence D ◦ D yields the second derivative; D ◦ D ◦ D yields the third derivative; and so on. Con-

ventionally, we will use Dn to denote the composite function of D with itself n times. Using this
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notation, it follows that D2 produces the second derivative; D3 produces the third derivative; and

so on. Considering that the (n+1)th derivative of a polynomial of degree n is always zero, it follows

that ker(D2) = {ax+ b | a, b ∈ R}, ker(D3) = {ax2 + bx+ c | a, b, c ∈ R}, and so on.

By Example 1.10.7, we may also define the linear transformation R0 : P2(x) → P3(x) such that

R0(ax
2+ bx+ c) =

∫ x

0
(at2+ bt+ c) dt. Observe that the composite functions R0 ◦D : P3(x) → P3(x)

and D ◦R0 : P2(x) → P2(x) are linear transformations that satisfy the following identities.

(R0 ◦D)(ax3 + bx2 + cx+ d) = R0(3ax
2 + 2bx+ c) =

∫ x

0

(3at2 + 2bt+ c) dt = ax3 + bx2 + cx

(D ◦R0)(ax
2 + bx+ c) = D

(
a

3
x3 +

b

2
x2 + cx+ d

)
= ax2 + bx+ c

Consequently, we have that ker(R0 ◦D) = {d | d ∈ R} = span{1} and range(R0 ◦D) = {ax3+ bx2+

cx | a, b, c ∈ R} = span{x, x2, x3} so that 4 = dim(P3(x)) = rank(R0 ◦D) + nullity(R0 ◦D). On the

other hand, we have that ker(D◦R0) = {0} and range(D◦R0) = {ax2+bx+c | a, b, c ∈ R} = P2(x).

Corollary 1.13.4. Composition of linear transformations is not commutative in general. Explicitly,

if S : V → W and T : W → V are linear transformations of vectors spaces V and W, then it is not

necessarily true that T ◦ S : V → V and S ◦ T : W → W satisfy that T ◦ S = S ◦ T.

Example 1.13.3 gives rise to four important notions in the theory of linear transformations.

First, if T : V → V is a linear transformation from a vector space V to itself, then we will say that

T is a linear operator. We will henceforth adopt the notation that if n is a positive integer, then

T n is the composite function of T with itself n times, e.g., T 2 = T ◦ T and T 3 = T ◦ T ◦ T. Observe

that if U is a subspace of V, then the composite function T n for a positive integer n is well-defined

for any linear transformation T : V → U because the codomain U is a subset of the domain V. Last,

we will denote by I : V → V the identity operator defined by I(v) = v for all vectors v ∈ V. If

T : V → W is a linear transformation of vector spaces V and W, then we say that S : W → V is a

left inverse of T (or T is a right inverse of S) if S ◦ T : V → V satisfies that S ◦ T = I.

Proposition 1.13.5. Let T : V → W be a linear transformation of vector spaces V and W.

1.) T admits a left inverse if and only if T is injective.

2.) T admits a right inverse if and only if T is surjective.

Proof. We will assume first that T is injective. We must provide a linear transformation S : W → V

such that (S◦T )(v) = v for every vector v ∈ V. By Proposition 1.11.17, it suffices to specify S(wi) for

some basis vectors wi ∈ W. We achieve this as follows. Begin with a basis B for V. By Proposition

1.11.9, the images T (vi) of the basis vectors vi ∈ B form a collection T (B) of linearly independent

vectors of W. By Theorem 1.8.10, we may extend T (B) to a basis for W. We define the linear

transformation S : W → V by declaring that S(T (vi)) = vi for all basis vectors T (vi) of W and

S(wi) = OV for all other basis vectors wi ofW. Crucially, observe that (S◦T )(vi) = vi. Every element

of V can be written uniquely as α1v1 + · · · + αnvn for some scalars α1, . . . , αn and basis vectors

v1, . . . , vn and α1v1 + · · ·+αnvn = α1(S ◦T )(v1)+ · · ·+αn(S ◦T )(vn) = (S ◦T )(α1v1 + · · ·+αnvn).
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Conversely, if T admits a left inverse S : W → V, then for any vector v ∈ ker(T ), we have that

v = I(v) = (S ◦ T )(v) = S(T (v)) = S(OW ) = OV . We conclude that T is injective.

Likewise, if T is surjective, we construct a right inverse S : W → V in an analogous manner as

the first paragraph above; we need only recognize that if T is surjective, then Proposition 1.11.15

and Theorem 1.8.10 imply that a basis B for V gives rise to a spanning set T (B) for W that can be

reduced to a basis for W. Consequently, define the linear transformation S : W → V by declaring

that S(T (vi)) = vi for all basis vector T (vi) of W. Every element of W can be written uniquely as

α1T (v1) + · · ·+ αnT (vn) for some scalars α1, . . . , αn and basis vectors T (v1), . . . , T (vn) and

α1T (v1) + · · ·+ αnT (vn) = α1(T ◦ S)(T (v1)) + · · ·+ αn(T ◦ S)(T (vn))

= (T ◦ S)(α1T (v1) + · · ·+ αnT (vn)).

Last, if we assume that T admits a right inverse S : W → V, then for any vector w ∈ W, we

have that w = (T ◦S)(w) = T (S(w)), hence there exists a vector S(w) ∈ V such that w = T (S(w)).

We conclude therefore that range(T ) = W, hence T is surjective.

We say that a linear transformation T : V → W admits a (two-sided) inverse transformation

S : W → V if S ◦ T is the identity operator on V and T ◦ S is the identity operator on W.

Proposition 1.13.6. Every left inverse of a linear transformation T : V → W of vector spaces V

and W is a right inverse of T and vice-versa (provided that both a left inverse and a right inverse

of T exist). Consequently, if T admits a two-sided inverse, then it is unique.

Proof. Observe that if there exist linear transformations L : W → V and R : W → V satisfying

that L◦T is the identity operator on V and T ◦R is the identity operator on W, then it follows that

L(w) = L((T ◦ R)(w)) = (L ◦ T )(R(w)) = R(w) for all vectors w ∈ W. We conclude that L = R;

the second statement follows because any two-sided inverse of T is both a left and right inverse.

Generally, a linear transformation T : V → W is invertible if it admits both a left inverse and

a right inverse; the previous proposition implies that this two-sided inverse is unique, denoted by

T−1 : W → V. By definition, we have that T−1 ◦ T is the identity operator on V and T ◦ T−1 is the

identity operator on W. We provide necessary and sufficient conditions for the existence of inverses.

Corollary 1.13.7. If T : V → W is a linear transformation of vector spaces V and W, then T is

invertible if and only if T is bijective, i.e., it is both injective and surjective. Even more, if V is

finite-dimensional, then T is invertible if and only if T is injective if and only if T is surjective.

Proof. By definition, T is invertible if and only if it admits a left inverse and a right inverse if and

only if it is injective and surjective by Proposition 1.13.5. Consequently, if V is finite-dimensional,

then by the Rank-Nullity Theorem, we have that T is injective if and only if T is surjective, so it

suffices to prove that T is invertible if and only if T is injective. If T is invertible, then there exists

a unique linear operator T−1 : V → W such that T−1 ◦ T = I. Given any vector v ∈ ker(T ), we

have therefore that v = I(v) = (T−1 ◦ T )(v) = T−1(T (v)) = T−1(OV ) = OV , hence T is injective.

Conversely, if T is injective, then by Proposition 1.13.5, it admits a left inverse; likewise, T admits a

right inverse because it is surjective, hence it admits a two-sided inverse by Proposition 1.13.6.
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Example 1.13.8. Consider the real vector space F (R,R) consisting of all functions f : R → R.
Given any real number c, we may define a linear transformation Tc : F (R,R) → F (R,R) by declaring
that Tc(f) = cf. Observe that if c = 0, then Tc(f) = 0 for all functions f : R → R; however, if
c is nonzero, then T is invertible. Explicitly, the linear transformation Tc−1 : F (R,R) → F (R,R)
satisfies that (Tc−1 ◦ Tc)(f) = Tc−1(cf) = c−1(cf) = f = c(c−1f) = Tc(c

−1f) = (Tc ◦ Tc−1)(f).

Example 1.13.9. Consider the real vector space Rn×r of real n× r matrices. Given any invertible

real n × n matrix A, the linear transformation TA : Rn×r → Rn×r defined by TA(B) = AB is

invertible. Explicitly, the linear transformation TA−1 : Rn×r → Rn×r satisfies that

(TA−1 ◦ TA)(B) = TA−1(AB) = A−1(AB) = B = A(A−1B) = TA(A
−1B) = (TA ◦ TA−1)(B).

Example 1.13.10. Consider the real vector space R[x] of real polynomials in indeterminate x. We

may define a function Tx : R[x] → R[x] by Tx(p(x)) = xp(x). Observe that Tx is a linear operator:

indeed, it holds that Tx(αp(x)+q(x)) = x(αp(x)+q(x)) = α(xp(x))+xq(x) = αTx(p(x))+Tx(q(x))

for all real numbers α and all real polynomials p(x) and q(x). Even more, Tx is injective: if xp(x) =

Tx(p(x)) = Tx(q(x)) = xq(x), then we may cancel x from both sides to find that p(x) = q(x). On

the other hand, Tx is not surjective because no constant polynomial can be written as xp(x) for any

polynomial p(x). We conclude that Tx : R[x] → R[x] is not invertible.
Conversely, let us restrict our attention to the set W = {p(x) | p(0) = 0} of real polynomials in

indeterminate x whose constant term is 0. By the Three-Step Subspace Test, we find that W is a

subspace of R[x]. Even more, Tx : R[x] → W is surjective because every polynomial with constant

term 0 is divisible by x, i.e., if p(0) = 0, then there exists a polynomial q(x) such that p(x) = xq(x).

By Proposition 1.13.5, it follows that Tx admits a right inverse Sx : W → R[x]. Explicitly, this linear
transformation is defined by Sx(p(x)) = q(x), where q(x) is the polynomial satisfying p(x) = xq(x).

On the other hand, ker(Tx) is the infinite-dimensional vector space consisting of all polynomials

that are divisible by x, hence Tx does not admit a left inverse by the same proposition as before.

Remark 1.13.11. Example 1.13.10 exhibits the important and often overlooked fact that a function

(and hence a linear transformation) consists of a rule, a domain, and a codomain. Explicitly, if

T : V → W is a linear transformation of vector spaces, the rule is T ; the domain is V ; and the

codomain is W. Each of these three aspects of T : V → W determines its properties, i.e., none of

the information in the definition of T is extraneous. Particularly, it is possible that T : V → W

fails to be surjective; however, it is always true that T : V → range(T ) is surjective.

One of the primary motivations to study linear transformations of vector spaces is to classify dis-

tinct vector spaces up to isomorphism. We say that two vectors spaces V and W are isomorphic

and we write V ∼= W if there exists a bijective linear transformation T : V → W. Consequently, by

Corollary 1.13.7, the isomorphisms between the vector spaces V and W are precisely the invertible

linear transformations T : V → W. Even more, if T : V → W is an isomorphism, then the inverse

transformation T−1 : W → V is also an isomorphism because T is a two-sided inverse for T−1.

Essentially, an isomorphism between the vector spaces V and W can be viewed as a unique

relabelling of the vectors ofW in terms of the vectors of V : indeed, if T : V → W is an isomorphism,

then T is surjective, hence for every vector w ∈ W, there exists a vector v ∈ V such that w = T (v).

Even more, T is injective, hence the vector v for which w = T (v) is unique to w. Consequently, we

may view the vector v for which w = T (v) as the unique relabelling of w in terms of the vector v.
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Theorem 1.13.12. Every real vector space of dimension n is isomorphic to the vector space R1×n

of real 1× n matrices. Particularly, the real vector space Rn of real n-tuples is isomorphic to R1×n.

Proof. Let E1, . . . , En denote the standard basis vectors of R1×n, i.e., suppose that Ei is the 1× n

matrix consisting of 1 in the ith column and zeros elsewhere. Given any real vector space V

of dimension n, there exist linearly independent vectors v1, . . . , vn that span V. By Proposition

1.11.17, we may define the coordinatization linear transformation T : V → R1×n by declaring

that T (vi) = Ei. Given any real 1× n matrix
[
a1 · · · an

]
in R1×n, we have that[

a1 · · · an
]
= a1E1 + · · ·+ anEn = a1T (v1) + · · ·+ anT (vn) = T (a1v1 + · · ·+ anvn).

Consequently, the transformation T is surjective; it is injective by the Rank-Nullity Theorem.

1.14 Matrix Representations of Linear Transformations

We conclude our chapter on matrices and vector spaces by bringing our discussion full circle. Ex-

plicitly, we will demonstrate that every m×n matrix can be represented (not necessarily uniquely)

by a linear transformation T : V → W from a vector space V of dimension n to a vector space

W of dimension m. Conversely, and more importantly, every linear transformation T : V → W

from an n-dimensional vector space V to an m-dimensional vector space W can be represented (not

necessarily uniquely) as an m × n matrix A. Consequently, to understand linear transformations

between finite-dimensional vector spaces, it suffices to study matrices and vice-versa.

Consider a vector space V of dimension n for some non-negative integer n. Occasionally, it is

possible to find a “canonical” ordered basis for V. We have already encountered this situation.

Example 1.14.1. Consider the real vector space R1×3 of real 1× 3 matrices. By Example 1.7.11,

the real 1 × 3 matrices E1 = (1, 0, 0), E2 = (0, 1, 0), and E3 = (0, 0, 1) form an ordered basis for

R1×3. We refer to this ordered basis as the standard basis of R1×3 because we have that

(a1, a2, a3) = (a1, 0, 0) + (0, a2, 0) + (0, 0, a3) = a1E1 + a2E2 + a3E3,

hence it is clear that E1, E2, E3 is the canonical choice for an ordered basis of R1×3.

Example 1.14.2. Consider the real vector space R1×n of real 1×n matrices. Observe that the real

1×n matrices E1, E2, . . . , En for which Ei consists of 1 in the ith column and zeros elsewhere form

the standard basis for R1×n. Like before, for any real 1× n matrix (a1, a2, . . . , an), we have that

(a1, a2, . . . , an) = (a1, 0, . . . , 0) + (0, a2, . . . , 0) + · · ·+ (0, 0, . . . , an) = a1E1 + a2E2 + · · ·+ anEn,

hence the basis E1, E2, . . . , En is the canonical choice for an ordered basis of R1×n.

Example 1.14.3. Consider the real vector space R2×2 of real 2× 2 matrices. We note that

E11 =

[
1 0

0 0

]
and E12 =

[
0 1

0 0

]
and E21 =

[
0 0

1 0

]
and E22 =

[
0 0

0 1

]
form the standard basis for R2×2. By definition, every element of R2×2 can be written uniquely as[

a b

c d

]
= a

[
1 0

0 0

]
+ b

[
0 1

0 0

]
+ c

[
0 0

1 0

]
+ d

[
0 0

0 1

]
.

Even more, the coordinates this 2× 2 matrix with respect to this ordered basis are (a, b, c, d).
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Example 1.14.4. Consider the real vector space Rm×n of real m × n matrices equipped with the

usual basis of m× n matrices E11, E12, . . . , E1n, . . . , Emn for which the (i, j)th component of Eij is

1 and all other components are zero. Every element of Rm×n can be written uniquely asa11 a12 · · · a1n
...

...
...

am1 am2 · · · amn

 = a11E11 + a12E12 + · · ·+ a1nE1n + · · ·+ am1Em1 + am2Em2 + · · ·+ amnEmn.

Consequently, the m×n matrices E11, E12, . . . , E1n, . . . , Emn form the standard basis for Rm×n; the

standard coordinates of the displayed m× n matrix are (a11, a12, . . . , a1n, . . . , am1, am2, . . . , amn).

Example 1.14.5. Consider the real vector space Pn(x) of real polynomials in indeterminate x of

degree at most n. By definition, every element of Pn(x) can be written uniquely as

a0 + a1x+ a2x
2 + · · ·+ anx

n

for some real numbers a0, a1, a2, . . . , an. Consequently, the polynomials 1, x, x2, . . . , xn form the

standard basis for the real vector space of polynomials of degree at most n. Observe that the

coordinates of such a polynomial with respect to this ordered basis are (a0, a1, a2, . . . , an).

Our first order of business is to establish that for every real m×n matrix A, there exists a linear

transformation T : V → W from a real vector space V of dimension n to a real vector space W of

dimension m that behaves in the same way as A. Given any real m × n matrix A, we may define

a linear transformation TA : Rn×1 → Rm×1 by declaring that for any real n× 1 matrix X, we have

that TA(X) = AX. Consequently, under this assignment, the linear transformation TA has the effect

of multiplying a real n × 1 column vector X by the m × n matrix A to product an m × 1 column

vector AX. By Proposition 1.11.17, it holds that TA is the unique linear transformation from Rn×1

to Rm×1 that represents A because TA and A behave the same way with respect to a basis of Rn×1.

Proposition 1.14.6. Every real m × n matrix A can be represented (not necessarily uniquely) by

the linear transformation TA : Rn×1 → Rm×1 defined by TA(X) = AX.

Example 1.14.7. Be aware that it is possible to represent a real m × n matrix A by a different

linear transformation than TA : Rn×1 → Rm×1. Consider the following real 2× 2 matrix.

A =

[
0 1

0 0

]
Certainly, the matrix A is represented by the linear transformation TA : R2×1 → R2×1 defined by

TA(X) = AX. Consider the real vector space P1(x) of real polynomials in indeterminate x of degree

at most one. By Example 1.14.3, the standard basis of P1(x) is the ordered basis consisting of 1

and x. Every element of P1(x) can be written as a + bx = a · 1 + b · x, hence the coordinates of

a real polynomial of degree at most one with respect to this ordered basis are (a, b). Consider the

linear transformation d
dx

: P1(x) → P1(x) defined by d
dx
(a + bx) = b. Observe that the coordinates

of d
dx
(a+ bx) with respect to the standard basis of P1(x) are (b, 0) because b = b · 1 + 0 · x. On the

other hand, if we view the polynomial a+ bx with respect to its coordinates (a, b), then[
b

0

]
=

[
0 1

0 0

] [
a

b

]
.
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Consequently, the linear transformation d
dx

: P1(x) → P1(x) behaves in the same way as the matrix

A with respect to the standard basis of the two-dimensional real vector space P1(x).

Our previous example is indicative of a more general phenomenon. Consider a linear transfor-

mation T : V → W from a vector space V of dimension n to a vector space W of dimension m. By

Proposition 1.11.17, the linear transformation T is uniquely determined by its images on a basis of

V. Explicitly, if v1, . . . , vn form a basis for V, then the vectors T (v1), . . . , T (vn) in W provide all of

the information to determine T (v) for any vector v ∈ V. Consequently, for each basis vector vj, we

may write T (vj) = a1jw1 + a2jw2 + · · ·+ amjwm for some basis w1, . . . , wm of W as follows.

T (v1) = a11w1 + a21w2 + · · ·+ am1wm

T (v2) = a12w1 + a22w2 + · · ·+ am2wm

...

T (vn) = a1nw1 + a2nw2 + · · ·+ amnwm

Collecting the coefficients of the vectors T (vj) with respect to the ordered basis vectors w1, . . . , wn

as the jth column of an m× n matrix, we obtain the following m× n matrix.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


Observe that the coordinates of a vector v ∈ V with respect to the ordered basis vectors v1, . . . , vn
of V are uniquely determined by the scalars α1, . . . , αn such that v = α1v1+ · · ·+αnvn. Particularly,

the coordinate vector of vj of respect to these ordered basis vectors is simply the standard basis

vector Ej of R1×n. Consequently, it follows that left-multiplication of each n× 1 column vector Et
j

by A yields AEt
j = (a1j, a2j, . . . , amj), i.e., the coordinate vector of T (vj) with respect to the ordered

basis vectors w1, . . . , wm of W. Unravelling these observations demonstrates that the matrix A acts

on the coordinate vector (α1, . . . , αn)
t of v = α1v1 + · · ·+ αnvn as the linear transformation T acts

on the vector v itself. Consequently, we refer to A as the matrix representation of the linear

transformation T with respect to the ordered bases v1, . . . , vn of V and w1, . . . , wn of W.

Algorithm 1.14.8 (Matrix Representation Algorithm). Given a linear transformation T : V → W

between a vector space V of dimension n and a vector space W of dimension m and ordered bases

BV = {v1, . . . , vn} and BW = {w1, . . . , wm} of V and W, respectively, use the following algorithm

to find the matrix representation of T with respect to the ordered bases BV and Bw.

1.) Compute the vector T (v1) of W ; then, find the unique coefficients a11, a21, . . . , am1 for which

T (v1) = a11w1 + a21w2 + · · ·+ am1wm. Use the method of Gaussian Elimination, if necessary.

2.) Compute the vector T (v2) of W ; then, find the unique coefficients a12, a22, . . . , am2 for which

T (v2) = a12w1 + a22w2 + · · ·+ am2wm. Use the method of Gaussian Elimination, if necessary.

3.) Continue in this manner for each of the remaining basis vectors of V.
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One will ultimately arrive at the m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


whose jth column consists of the unique coefficients of T (vj) with respect to the ordered basis

w1, w2, . . . , wm of W for each integer 1 ≤ i ≤ n; this is the matrix representation of the linear

transformation T : V → W with respect to the ordered bases BV and BW .

Example 1.14.9. Consider the function T : R1×3 → R1×3 defined by

T (x, y, z) = (x+ 2y + 3z, 2x+ 3y + 4z, 3x+ 4y + 5z).

Each of the components of T (x, y, z) is a linear function of x, y, and z, hence all together, T is a

linear transformation. We will compute the matrix representation of T with respect to the standard

basis E1 = (1, 0, 0), E2 = (0, 1, 0), and E3 = (0, 0, 1) of R1×3. We achieve this as follows.

T (E1) = T (1, 0, 0) = (1, 2, 3) = 1 · E1 + 2 · E2 + 3 · E3

T (E2) = T (0, 1, 0) = (2, 3, 4) = 2 · E1 + 3 · E2 + 4 · E3

T (E3) = T (0, 0, 1) = (3, 4, 5) = 3 · E1 + 4 · E2 + 5 · E3

Consequently, we obtain the matrix representation of T with respect to the standard basis of R1×3.

A =

1 2 3

2 3 4

3 4 5


We can verify that this indeed behaves in the same way as the linear transformation T as follows.1 2 3

2 3 4

3 4 5

xy
z

 =

 x+ 2y + 3z

2x+ 3y + 4z

3x+ 4y + 5z


Example 1.14.10. Consider the function T : R2×2 → R2×2 defined by

T

([
a b

c d

])
=

[
c d

a b

]
.

One can readily verify that T is a linear transformation because applying T to a real 2× 2 matrix

B swaps the rows of B, so it preserves linear combinations of matrices. We will compute the matrix

representation of T with respect to the standard basis E11, E12, E21, and E22 of R2×2. We achieve
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this by expressing T (E11), T (E12), T (E21), and T (E22) in terms of the standard basis for R2×2.

T (E11) = T

([
1 0

0 0

])
=

[
0 0

1 0

]
= 0 · E11 + 0 · E12 + 1 · E21 + 0 · E22

T (E12) = T

([
0 1

0 0

])
=

[
0 0

0 1

]
= 0 · E11 + 0 · E12 + 0 · E21 + 1 · E22

T (E21) = T

([
0 0

1 0

])
=

[
1 0

0 0

]
= 1 · E11 + 0 · E12 + 0 · E21 + 0 · E22

T (E22) = T

([
0 0

0 1

])
=

[
0 1

0 0

]
= 0 · E11 + 1 · E12 + 0 · E21 + 0 · E22

Consequently, we obtain the matrix representation of T with respect to the standard basis of R2×2.

A =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


We can verify that this indeed behaves in the same way as the linear transformation T as follows.

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



a

b

c

d

 =


c

b

a

d


Even more, composition and inversion of linear transformations are compatible with matrix

multiplication and matrix inversion of the matrix representations of linear transformations.

Proposition 1.14.11. Let T : V → W be a linear transformation from an n-dimensional vector

space V to an m-dimensional vector space W. Let A be the m× n matrix representation of T with

respect to some ordered bases BV of V and BW of W, respectively.

1.) If S : W → V is a linear transformation and B is the n×m matrix representation of S with

respect to the ordered bases BW of W and BV of V, then AB is the matrix representation of

T ◦ S and BA is the matrix representation of S ◦ T. Put another way, composition of linear

transformation corresponds to matrix multiplication of the matrix representations.

2.) We have that T is invertible if and only if A is invertible. Even more, the inverse transfor-

mation T−1 : W → V of T is represented by the matrix inverse A−1 of A with respect to the

specified ordered bases BV of V and BW of W, respectively.

Proof. (1.) We will assume that BV = {v1, . . . , vn} and BW = {w1, . . . , wm}. By definition of the

matrix representation of T, the ith row of A consists of the scalars ai1, . . . , ain such that aij is the
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coefficient of wi in the unique expression of T (vj) with respect to the basis vectors w1, . . . , wm.

Likewise, the jth column of B consists of the scalars b1j, . . . , bnj such that bij is the coefficient of vi
in the unique expression of S(wj) with respect to the basis vector v1, . . . , vn. By Definition 1.2.1, the

(i, j)th component of the matrix product AB is given by
∑n

k=1 aikbkj. Once we verify that this is

indeed the coefficient of wi in the unique expression of (T ◦S)(wj) with respect to the basis vectors

w1, . . . , wm, our first claim will be established. By our previous work, we have that

(T ◦ S)(wj) = T (S(wj)) = T (b1jv1 + · · ·+ bnjvn)

= b1jT (v1) + · · ·+ bnjT (vn)

= b1j(a11w1 + · · ·+ am1wm) + · · ·+ bnj(a1nw1 + · · ·+ amnwm)

= (a11b1j + · · ·+ a1nbnj)w1 + · · ·+ (am1b1j + · · ·+ amnbnj)wm.

Consequently, the coefficient of wi in the unique expression of (T ◦S)(wj) with respect to the basis

vectors w1, . . . , wm is ai1b1j + · · ·+ ainbnj =
∑n

k=1 aikbkj, as desired.

(2.) We note that T is invertible if and only if there exists a unique linear transformation

T−1 : W → V such that T ◦ T−1 is the identity operator on W and T−1 ◦ T is the identity

operator on V. Considering that the unique matrix representation of the identity operator on an

m-dimensional vector space (with respect to any basis) is the m×m identity matrix, we conclude

that if T is invertible, then the matrix representation B for T−1 with respect to the ordered basis

BW of W satisfies that AB = In×n and BA = In×n, hence A is invertible. Conversely, if the matrix

representation A of T with respect to the ordered basis BV is invertible, then there exists an n× n

matrix B such that AB = In×n and BA = In×n. Consider the linear transformation S : W → V

defined by S(wj) = b1jv1 + · · ·+ bnjvn for each basis vector w1, . . . , wn of W. We have that

(T ◦ S)(wj) = T (S(wj)) = T (b1jv1 + · · ·+ bnjvn)

= b1jT (v1) + · · ·+ bnjT (vn)

= b1j(a11w1 + · · ·+ am1wm) + · · ·+ bnj(a1nw1 + · · ·+ amnwm)

= (a11b1j + · · ·+ a1nbnj)w1 + · · ·+ (am1b1j + · · ·+ amnbnj)wm.

By the previous paragraph, the coefficient of wi is equal to the (i, j)th component of the matrix

product AB = In×n, hence the coefficient of wi is zero unless i = j, in which case it is one. We

conclude therefore that (T ◦S)(wj) = wj, hence T ◦S is the identity operator on W. By an analogous

argument, it follows that S ◦ T is the identity operator on V, hence T is invertible.

Example 1.14.12. Consider the function T : R1×2 → R1×2 defined by T (x, y) = (x+ y, 2y). Each

of the components of T (x, y) is a linear function of x and y, hence T is a linear transformation. We

compute the matrix representation of T with respect to the standard basis (1, 0) and (0, 1) of R1×2.
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Considering that T (1, 0) = (1, 0) = 1 · (1, 0) + 0 · (0, 1) and T (0, 1) = (1, 2) = 1 · (1, 0) + 2 · (0, 1),
the matrix representation of T with respect to the standard basis of R1×2 is as follows.

A =

[
1 1

0 2

]
We note that A is a 2× 2 matrix with two pivots, hence it is invertible. By Proposition 1.14.11, it

follows that T is invertible. We compute the inverse A−1 of A and use it to construct T−1.[
1 1 1 0

0 2 0 1

]
(1.)∼

[
1 1 1 0

0 1 0 1
2

]
(2.)∼

[
1 0 1 −1

2

0 1 0 1
2

]
(1.) We employed the elementary row operation 1

2
R2 7→ R2.

(2.) We employed the elementary row operation R1 −R2 7→ R2.

Using the scalars belonging to the rows of A−1, we construct T−1 as follows.

T−1(x, y) =

(
1x+−1

2
y, 0x+

1

2
y

)
=

(
x− 1

2
y,

1

2
y

)
One can verify that (T ◦ T−1)(x, y) = (x, y) and that (T−1 ◦ T )(x, y) = (x, y) as follows.

(T ◦ T−1)(x, y) = T

(
x− 1

2
y,

1

2
y

)
=

(
x− 1

2
y +

1

2
y, 2 · 1

2
y

)
= (x, y)

(T−1 ◦ T )(x, y) = T−1(x+ y, 2y) =

(
x+ y − 1

2
· 2y, 1

2
· 2y

)
= (x, y)

Example 1.14.13. We adapt this example from [Str06, Problem 31] on page 152. Consider the

linear transformation T : R2×2 → R2×2 defined by T (B) = AB for the following real 2× 2 matrix.

A =

[
1 2

3 4

]
We compute the matrix representation of T with respect to the standard basis of R2×2. We must

first find the coordinates of T (E11), T (E12), T (E21), and T (E22) the standard basis of R2×2.

T (E11) = T

([
1 0

0 0

])
=

[
1 2

3 4

] [
1 0

0 0

]
=

[
1 0

3 0

]
= 1 · E11 + 0 · E12 + 3 · E21 + 0 · E22

T (E12) = T

([
0 1

0 0

])
=

[
1 2

3 4

] [
0 1

0 0

]
=

[
0 1

0 3

]
= 0 · E11 + 1 · E12 + 0 · E21 + 3 · E22

T (E21) = T

([
0 0

1 0

])
=

[
1 2

3 4

] [
0 0

1 0

]
=

[
2 0

4 0

]
= 2 · E11 + 0 · E12 + 4 · E21 + 0 · E22

T (E22) = T

([
0 0

0 1

])
=

[
1 2

3 4

] [
0 0

0 1

]
=

[
0 2

0 4

]
= 0 · E11 + 2 · E12 + 0 · E21 + 4 · E22
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We arrive at the matrix representation for T by forming the following 4× 4 matrix.

R =


1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 4


Even though it is not immediately clear that the matrix R is invertible, we suspect that it is because

A is an invertible matrix, hence T should be an invertible transformation. Explicitly, we have that

1 · 4 − 2 · 3 = 4 − 6 = −2 is nonzero, hence A is invertible by Example 1.5.9. Either way, we may

perform elementary row operations to convert R to its reduced row echelon form.
1 0 2 0 1 0 0 0

0 1 0 2 0 1 0 0

3 0 4 0 0 0 1 0

0 3 0 4 0 0 0 1

 (1.)∼


1 0 2 0 1 0 0 0

0 1 0 2 0 1 0 0

0 0 −2 0 −3 0 1 0

0 3 0 4 0 0 0 1

 (2.)∼


1 0 2 0 1 0 0 0

0 1 0 2 0 1 0 0

0 0 −2 0 −3 0 1 0

0 0 0 −2 0 −3 0 1



(3.)∼


1 0 2 0 1 0 0 0

0 1 0 2 0 1 0 0

0 0 −2 0 −3 0 1 0

0 0 0 1 0 3
2

0 −1
2



(4.)∼


1 0 2 0 1 0 0 0

0 1 0 0 0 −2 0 1

0 0 −2 0 −3 0 1 0

0 0 0 1 0 3
2

0 −1
2



(5.)∼


1 0 2 0 1 0 0 0

0 1 0 0 0 −2 0 1

0 0 1 0 3
2

0 −1
2

0

0 0 0 1 0 3
2

0 −1
2



(6.)∼


1 0 0 0 −2 0 1 0

0 1 0 0 0 −2 0 1

0 0 1 0 3
2

0 −1
2

0

0 0 0 1 0 3
2

0 −1
2


(1.) We employed the elementary row operation R3 − 3R1 7→ R3.

(2.) We employed the elementary row operation R4 − 3R2 7→ R4.

(3.) We employed the elementary row operation −1
2
R4 7→ R4.

(4.) We employed the elementary row operation R2 − 2R4 7→ R2.
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(5.) We employed the elementary row operation −1
2
R3 7→ R3.

(6.) We employed the elementary row operation R1 − 2R3 7→ R3.

Consequently, we find that R is invertible, hence the linear transformation T that it represents is

invertible. We compute T−1 by taking the rows of R−1 as the coefficients of E11, E12, E21, and E22.

T−1

([
a b

c d

])
=

[
−2a+ c −2b+ d
3
2
a− 1

2
c 3

2
b− 1

2
d

]
=

[
−2 1

3
2

−1
2

] [
a b

c d

]
Consequently, we find that T−1(B) = CB, where C is the following real 2× 2 matrix.

C =

[
−2 1

3
2

−1
2

]
One can readily verify that C = A−1, but this agrees with our intuition: because A is invertible,

there exists a real 2 × 2 matrix A−1 such that A−1A = I2×2 = AA−1. Consequently, the linear

transformation S : R2×2 → R2×2 defined by S(B) = A−1B satisfies that

(T ◦ S)(B) = T (A−1B) = A(A−1B) = B = A−1(AB) = S(AB) = (S ◦ T )(B).

1.15 Chapter 1 Overview

This section is currently under construction.



Chapter 2

Canonical Forms for Matrices

We introduced in the first chapter the notion of matrices, their arithmetic, and numerous important

properties of them. Essentially, the theory of matrices vastly simplifies the algebra of large sets of

data. We demonstrated that the collection of all real m× n matrices forms an algebraic structure

called a vector space; vector spaces are ubiquitous throughout mathematics, so it is critical to un-

derstand their properties. We defined functions (linear transformations) between vector spaces, and

we studied certain vector spaces called the kernel and the range associated to a linear transforma-

tion. Ultimately, we established that linear transformations and matrices are intimately connected

in a rigorous sense: explicitly, every linear transformation induces a matrix that is uniquely de-

termined by specifying a basis for the domain and codomain spaces of the linear transformation.

Consequently, we are motivated to return to further develop the theory of matrices in this chapter.

2.1 Determinants of n× n Matrices

Back in Example 1.10.6, we defined the determinant of a real 2× 2 matrix as

det

([
a11 a12
a21 a22

])
= a11a22 − a12a21.

Explicitly, the determinant of a real 2 × 2 matrix is a function det : R2×2 → R that sends a real

2× 2 matrix to the difference of the product a11a22 of its diagonal elements and the product a12a21
of its anti-diagonal elements. Generally, the determinant can be defined recursively for an n×n

matrix for any positive integer n. We will not concern ourselves with determinants of matrices of

size exceeding three, so it suffices to define the determinant of a real 3× 3 matrix. Out of desire for

notational convenience, we will seldom use the det(−) notation for a matrix whose components we

wish to display explicitly; rather, we will denote the determinant using vertical bars as follows.∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

Under this identification, the determinant of a 3× 3 matrix can be defined as follows.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a21
a31 a32

∣∣∣∣
63
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Explicitly, we take the product of the (1, 1)th component a11 of the matrix with the determinant of

the 2× 2 submatrix obtained by deleting row one and column one; then, we subtract from that the

product of the (1, 2)th component a12 of the matrix with the determinant of the 2 × 2 submatrix

obtained by deleting row one and column two; and we add to that the product of the (1, 3)th

component of the matrix with the determinant of the 2× 2 submatrix obtained by deleting row one

and column three. Using the determinant of a 2× 2 matrix, we obtain the following formula.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

One naturally wonders the purpose of defining the determinant of a 3 × 3 matrix by expanding

along the first row, i.e., using the first row of the matrix as the coefficients of the determinants of

the attendant 2×2 submatrices instead of using the second row or even some column of the matrix.

Out of curiosity and for illustrative purposes, let us compute the determinant using the second row

of the matrix. Essentially, we must rearrange the above displayed equation to obtain an alternating

sum of a21(a12a33−a13a32), a22(a11a33−a13a31), and a23(a11a32−a12a31); the differences are obtained

as the determinants of the 2× 2 submatrices obtained by deleting the second row and jth column

for each integer 1 ≤ j ≤ 3. By finding each of these terms in the above displayed equation and

determining the appropriate signs, we obtain the following description of the determinant.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = −a21(a12a33 − a13a32) + a22(a11a33 − a13a31)− a23(a11a32 − a12a31)

Generally, we may define the determinant of an n× n matrix as follows.

Definition 2.1.1. Given any n× n matrix A, let Aij denote the (n− 1)× (n− 1) submatrix of A

obtained by deleting the ith row and jth column of A. We define the determinant of A by

det(A) =
n∑

j=1

(−1)i+jaij det(Aij).

Example 2.1.2. By the recursive definition of the determinant, we obtain the following.∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣ = 1(5 · 9− 6 · 8)− 2(4 · 9− 6 · 7) + 3(4 · 8− 5 · 7) = −3− 2(−6) + 3(−3) = 0

Example 2.1.3. By the recursive definition of the determinant, we obtain the following.∣∣∣∣∣∣
1 1 0

1 0 1

0 1 1

∣∣∣∣∣∣ = 1(0 · 1− 1 · 1)− 1(1 · 1− 1 · 0) + 0(1 · 1− 0 · 0) = −1− 1 + 0 = −2

Last chapter, we discussed the importance of the three elementary row operations for matrices.

Explicitly, the method of Gaussian Elimination can be used to convert a real m × n matrix to

its unique reduced row echelon form, from which many important properties of a matrix (e.g.,

rank and invertibility) can be deduced. Consequently, it is natural to consider the behavior of the

determinant of a matrix with respect to the elementary row operations. We achieve this as follows.
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Proposition 2.1.4. Given any n × n matrix A and any scalar α, consider the n × n matrix B

obtained from A by multiplying any row of A by α. We have that det(B) = α det(A).

Proof. We will assume that B is obtained from A by multiplying the ith row of A by α. Consider

the (n− 1)× (n− 1) matrix Aij obtained from A by deleting the ith row and jth column of A. By

hypothesis, we have that bij = αaij and Bij = Aij for each integer 1 ≤ j ≤ n. By Definition 2.1.1, we

conclude that det(B) =
∑n

j=1(−1)i+jbij det(Bij) = α
(∑n

j=1(−1)i+jaij det(Aij)
)
= α det(A).

Corollary 2.1.5. Given any n× n matrix A with a zero row, we have that det(A) = 0.

Proof. We will assume that the ith row of A is zero. Considering that A is obtained from some n×n

matrix B by multiplying the ith row of B by zero, we conclude that det(A) = 0 det(B) = 0.

Corollary 2.1.6. Given any n× n matrix A and any scalar α, we have that det(αA) = αn det(A).

Proof. By definition, the n× n matrix αA is obtained from the matrix A by scaling each of the n

rows of A by α. Consequently, we have that det(αA) = αn det(A) by repeatedly factoring α.

Proposition 2.1.7. Given any n× n matrices A and B that are equal except in one row, consider

the n × n matrix C obtained from A and B by adding the two rows of A and B that are distinct

and including all of the rows of A and B that are equal. We have that det(C) = det(A) + det(B).

Proof. We will assume that the ith row of A is distinct from the ith row of B for some integer

1 ≤ i ≤ n. By definition, the n× n matrix C satisfies that cjk = ajk = bjk for all integers 1 ≤ j ≤ n

with j ̸= i and cik = aik + bik for all integers 1 ≤ k ≤ n. Consequently, the (n− 1)× (n− 1) matrix

Cik obtained from C by deleting the ith row and the kth column of C satisfies that Cik = Aik = Bik

so that det(Cik) = det(Aik) = det(Bik) for all integers 1 ≤ i ≤ k. We conclude the result as follows.

det(C) =
n∑

k=1

(−1)i+kcik det(Cik) =
n∑

k=1

(−1)i+k(aik + bik) det(Cik)

=
n∑

k=1

(−1)i+kaik det(Cik) +
n∑

k=1

(−1)i+kbik det(Cik)

=
n∑

k=1

(−1)i+kaik det(Aik) +
n∑

k=1

(−1)i+kbik det(Bik)

= det(A) + det(B)

Proposition 2.1.8. Given any n× n matrix A with two equal rows, we have that det(A) = 0.

Proof. We will proceed by induction on the integer n ≥ 2. Certainly, if there are only two rows of

A, then they must be equal to one another, hence the result holds in the case that n = 2 as follows.∣∣∣∣a11 a12
a11 a12

∣∣∣∣ = a11a12 − a12a11 = 0
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Consequently, we may assume inductively that the result holds for some integer n ≥ 3. We may

assume that the ith row of A and the jth row of A are equal for some integers 1 ≤ i < j ≤ n.

Consider the n × n matrix Akℓ obtained from A by deleting the kth row and ℓth column of A for

some integer 1 ≤ k ≤ n that is distinct from both i and j. We may find such an integer k by

assumption that n ≥ 3. Crucially, we note that the ith row of Akℓ and the jth row of Akℓ are equal

for all integers 1 ≤ ℓ ≤ n, hence by induction, it follows that det(Akℓ) = 0 for all integers 1 ≤ ℓ ≤ n.

By Definition 2.1.1, we conclude the desired result that det(A) =
∑n

ℓ=1(−1)k+ℓakℓ det(Akℓ) = 0.

Proposition 2.1.9. Given any n × n matrix A, any scalar α, and any integers 1 ≤ i < j ≤ n,

consider the n×n matrix B obtained from A by replacing the jth row of A with the sum of α times

the ith row and the jth row of A. We have that det(B) = det(A). Put another way, if we add any

scalar multiple of a row of an n× n matrix to any other row, the determinant does not change.

Proof. By definition of B, we have that bkℓ = akℓ for all integers 1 ≤ k ≤ n such that k ̸= j and

bjℓ = αaiℓ+ajℓ for all integers 1 ≤ ℓ ≤ n. Consider the n×n matrix C obtained from A by replacing

the jth row of A with α times the ith row of A. Crucially, observe that B is obtained from A and C by

including all common rows of A and C and taking the sum of the jth rows of A and C as the jth row

of B. Consequently, by Proposition 2.1.7, we have that det(B) = det(A)+det(C). Consider the n×n

matrix D obtained from A by replacing the jth row of A with the ith row of A. Explicitly, we note

that C is obtained from D by multiplying the jth row of D by α. By Proposition 2.1.4, we have that

det(C) = α det(D). Considering that the ith and jth rows ofD are equal, it follows from Proposition

2.1.8 that det(D) = 0 so that det(B) = det(A) + det(C) = det(A) + α det(D) = det(A).

Corollary 2.1.10. Given any n× n matrix A, if some row of A can be written as a linear combi-

nation of some other rows of A, then we have that det(A) = 0.

Proof. We will denote by Ai the ith row of A. Consider the case that Ai = α1Ai1 + · · ·+ αkAik for

some integers 1 ≤ i1 < · · · < ik ≤ n and some scalars α1, . . . , αk. By rearranging the terms of the

above identity, we find that −α1Ai1 − · · · − αkAik + Ai = O. Consequently, we may subtract αj

times the ijth row of A from the ith row of A for each integer 1 ≤ j ≤ k to reduce the ith row of

A to zero. By Proposition 2.1.9, this process does not change the determinant of A; on the other

hand, the determinant of the resulting matrix is zero by Corollary 2.1.5 so that det(A) = 0.

Proposition 2.1.11. Given any n× n matrix A, consider the n× n matrix B obtained from A by

interchanging any pair of rows of A. We have that det(B) = −det(A). Put another way, swapping

any pair of rows of an n× n matrix alters the sign of the determinant.

Proof. Certainly, if any pair of rows of A are equal, then we have that det(B) = 0 = −0 = −det(A).

Consequently, we may assume that all rows of A are distinct. Crucially, we may obtain B from A

by a sequence of operations that alter the determinant in exactly the manner claimed. Begin with

the matrix C that is obtained from A by replacing the ith row of A with the sum of the ith and

jth rows of A. By Propositions 2.1.7 and 2.1.8, it follows that det(C) = det(A). Consider next the

matrix D that is obtained from C by subtracting the ith row of C from the jth row of C so that

the jth row of D is the ith row of A with the opposite sign. By Proposition 2.1.9, it follows that

det(D) = det(C) = det(A). Last, we notice that B can be obtained from D by multiplying the jth

row of D by −1; then, Proposition 2.1.4 yields that det(B) = −det(D) = −det(A).
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By the previous laundry list of properties of the determinant, we have fully described the behav-

ior of the determinant with respect to the elementary row operations on matrices. We demonstrate

next these properties also hold for the columns, and we summarize in the following corollary.

Proposition 2.1.12. Given any n× n matrix A, we have that det(At) = det(A).

Proof. Unlike usual, we will prove the proposition only in the case that n = 2 or n = 3; the proof of

the general case is beyond the scope of this class at the moment. Observe that the following hold.∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 = a11a22 − a21a12 =

∣∣∣∣a11 a21
a12 a22

∣∣∣∣
Considering that the left-hand side is an arbitrary 2 × 2 matrix and the right-hand side is the

transpose of this matrix, the result holds for n = 2. Likewise, the following identities hold.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

∣∣∣∣∣∣
a11 a21 a31
a12 a22 a32
a13 a23 a33

∣∣∣∣∣∣ = a11(a22a33 − a23a32)− a21(a12a33 − a13a32) + a31(a12a23 − a13a22)

Once again, the result holds as soon as we recognize that the right-hand sides are equal.

Corollary 2.1.13. Given any n× n matrix A, the following properties hold.

1.) We may compute det(A) by expanding along any row of A.

2.) By multiplying any row of A by α, we multiply det(A) by α.

3.) By adding a scalar multiple of one row of A to another row, we do not change det(A).

4.) By swapping two rows of A, we change the sign of det(A).

5.) We have that det(A) = 0 if any row of A is zero.

6.) We have that det(A) = 0 if any pair of rows of A are equal.

7.) We have that det(A) = 0 if any row of A is a linear combination of other rows of A.

8.) We have that det(A) = α det(RREF(A)) for some scalar α.

Each of the above statements also holds if we use columns instead of rows.

Example 2.1.14. Consider the following real 3× 3 matrix.

A =

1 2 3

2 4 6

3 6 9


Considering that the second row of A is equal to twice the first row of A, it follows by Proposition

2.1.10 that det(A) = 0. One could make a similar argument with the first and third rows of A.
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Example 2.1.15. Consider the following real 3× 3 matrix.

A =

1 1 0

1 2 1

2 1 1


By employing the elementary row operations R2 − R1 7→ R2 and R3 − R1 7→ R3, according to

Proposition 2.1.9, we do not alter det(A). Consequently, obtain the following 3× 3 matrix.

B =

1 1 0

0 1 1

1 0 1


By employing the elementary row operation R2 ↔ R3, we obtain the following 3× 3 matrix.

C =

1 1 0

1 0 1

0 1 1


By Example 2.1.3 and Proposition 2.1.11, we conclude the following.

det(A) = − det(C) = −

∣∣∣∣∣∣
1 1 0

1 0 1

0 1 1

∣∣∣∣∣∣ = 2

Example 2.1.16. Consider the following real 3× 3 matrix.

A =

0 0 1

0 1 0

1 0 0


By employing the elementary column operation C1 ↔ C3, we obtain the 3 × 3 identity matrix.

Consequently, by Corollary 2.1.13, we have that det(A) = − det(I3×3). Last, observe the following.

det(A) = − det(I3×3) = −

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣ = −1

∣∣∣∣1 0

0 1

∣∣∣∣ = −1

2.2 The Adjugate of a Matrix

Every square matrix possesses a numerical invariant called a determinant. We will gradually come

to understand throughout this chapter that the determinant of a matrix contains a wealth of infor-

mation about the properties of a matrix, e.g., we have already seen that a matrix has determinant

zero if it possesses a pair of linearly dependent rows or columns. Computing the determinant of a

square matrix amounts to recursively expanding the matrix about some row or column by multi-

plying each subsequent entry aij of the specified row or column of the matrix by the determinant

of the submatrix obtained by deleting the ith row and column jth column of the matrix.
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One other way to obtain the determinant of an n×n matrix A is as the coefficient of the scalar

matrix det(A)I. We achieve this by taking the product of A with its adjugate matrix adj(A).

We note that the adjugate matrix can also be encountered under the name of the classical adjoint

(cf. [HK71, Exercise 5.2.3]); however, we will not adopt such terminology here because it is often

associated with another object related to linear transformations. Like before, the adjugate matrix

is defined recursively beginning with the case of 2× 2 matrices as follows.

A =

[
a b

c d

]
and adj(A) =

[
d −b

−c a

]
Explicitly, the adjugate matrix of any 2 × 2 matrix is obtained by swapping the elements on the

main diagonal and changing the signs of the elements on the anti-diagonal. Observe the following.

adj(A)A =

[
d −b

−c a

] [
a b

c d

]
=

[
ad− bc 0

0 ad− bc

]
=

[
det(A) 0

0 det(A)

]
= det(A)I2×2

Consequently, if det(A) is nonzero, then A is an invertible 2× 2 matrix with A−1 = 1
det(A)

adj(A).

We will soon verify that this rationale is much more general and applies to square matrices of

all sizes. Before we are able to do this, we must define the adjugate of any n× n matrix.

Definition 2.2.1. Given any n× n matrix A, let Aij denote the (n− 1)× (n− 1) submatrix of A

obtained by deleting the ith row and jth column of A. We refer to the (real) number µij = det(Aij)

used in the definition of the determinant of A as the (i, j)th minor of the matrix A.

Definition 2.2.2. Given any n× n matrix A, let µij denote the (i, j)th minor of A, i.e., µij is the

determinant of the (n−1)×(n−1) submatrix of A obtained by deleting the ith row and jth column

of A. We refer to the (real) number γij = (−1)i+jµij as the (i, j)th cofactor of the matrix A.

Definition 2.2.3. Given any n× n matrix A, let γij denote the (i, j)th cofactor of A, i.e., suppose

that γij = (−1)i+jµij = (−1)i+j det(Aij), where Aij is the matrix obtained from A by deleting its

ith row and jth column. We refer to the matrix Γ =
[
γij

]
1≤i≤n
1≤j≤n

as the cofactor matrix of A.

Definition 2.2.4. Given any n×n matrix A, let Γ denote the n×n cofactor matrix of A. We refer

to the n× n matrix adj(A) = Γt as the adjugate (or adjugate matrix) of A.

One thing to notice is that the adjugate matrix can be defined for any square matrix over any

ring because it only involves the operations of multiplication and subtraction; we will see that this

provides a drastic improvement to the method of Gaussian Elimination we used previously to detect

if a matrix is invertible. Explicitly, the process of Gaussian Elimination is only defined for matrices

over fields because division is sometimes necessary to find the reduced row echelon form of a matrix.

Example 2.2.5. Let us compute the adjugate of the following real 3× 3 matrix.

A =

1 1 0

1 0 1

0 1 1


By Example 2.1.3, we have that det(A) = −2. We will verify that adj(A)A = −2I3×3 = det(A)I3×3.

By Definition 2.2.4, we note that adj(A) is given by the transpose of the cofactor matrix Γ of A. By
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Definition 2.2.3, the (i, j)th component of the cofactor matrix Γ is the (i, j)th cofactor γij of A. By

Definition 2.2.2, the cofactors of A are the signed 2× 2 minors µij of A. Ultimately, we must begin

by finding the 2×2 minors µij of A. Considering that A is a 3×3 matrix, there are 9 = 3 ·3 minors.

By Definition 2.2.1, each minor µij is given by the determinant of the 2 × 2 matrix Aij obtained

from A by deleting its ith row and jth column. Consequently, we find the following minors.

µ11 =

∣∣∣∣0 1

1 1

∣∣∣∣ = −1 µ21 =

∣∣∣∣1 0

1 1

∣∣∣∣ = 1 µ31 =

∣∣∣∣1 0

0 1

∣∣∣∣ = 1

µ12 =

∣∣∣∣1 1

0 1

∣∣∣∣ = 1 µ22 =

∣∣∣∣1 0

0 1

∣∣∣∣ = 1 µ32 =

∣∣∣∣1 0

1 1

∣∣∣∣ = 1

µ13 =

∣∣∣∣1 0

0 1

∣∣∣∣ = 1 µ23 =

∣∣∣∣1 1

0 1

∣∣∣∣ = 1 µ33 =

∣∣∣∣1 1

1 0

∣∣∣∣ = −1

Continuing from this point, we find the 9 = 3 · 3 cofactors γij = (−1)i+jµij.

γ11 = (−1)1+1µ11 = −1 γ21 = (−1)2+1µ21 = −1 γ31 = (−1)3+1µ31 = 1

γ12 = (−1)1+2µ12 = −1 γ22 = (−1)2+2µ22 = 1 γ32 = (−1)3+2µ32 = −1

γ13 = (−1)1+3µ13 = 1 γ23 = (−1)2+3µ23 = −1 γ33 = (−1)3+3µ33 = −1

We are now in position to form the 3× 3 cofactor matrix Γ as follows.

Γ =

−1 −1 1

−1 1 −1

1 −1 −1


Observe that in this case, Γ is a symmetric matrix because each row of Γ is equal to the corresponding

column of Γ. Consequently, we have that adj(A) = Γt = Γ. Even more, the following holds.

adj(A)A =

−1 −1 1

−1 1 −1

1 −1 −1

1 1 0

1 0 1

0 1 1

 =

−2 0 0

0 −2 0

0 0 −2

 = −2I = det(A)I

Observe that if we divide both sides by det(A) = −2, then we find the following.

A−1 =
1

det(A)
adj(A) = −1

2

−1 −1 1

−1 1 −1

1 −1 −1

 =

 1
2

1
2

−1
2

1
2

−1
2

1
2

−1
2

1
2

1
2


Example 2.2.6. Let us compute the adjugate of the following real 3× 3 matrix.

A =

1 2 3

4 5 6

7 8 9


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By Definition 2.2.4, we have that adj(A) is equal to the transpose of the cofactor matrix Γ of A. By

Definition 2.2.3, we construct the cofactor matrix Γ by finding each of the cofactors γij of A. By

Definition 2.2.2, the cofactors of A are the signed 2× 2 minors µij of A. Ultimately, we must begin

by finding the 2×2 minors µij of A. Considering that A is a 3×3 matrix, there are 9 = 3 ·3 minors.

By Definition 2.2.1, each minor µij is given by the determinant of the 2 × 2 matrix Aij obtained

from A by deleting its ith row and jth column. Consequently, we find the following minors.

µ11 =

∣∣∣∣5 6

8 9

∣∣∣∣ = −3 µ21 =

∣∣∣∣2 3

8 9

∣∣∣∣ = −6 µ31 =

∣∣∣∣2 3

5 6

∣∣∣∣ = −3

µ12 =

∣∣∣∣4 6

7 9

∣∣∣∣ = −6 µ22 =

∣∣∣∣1 3

7 9

∣∣∣∣ = −12 µ32 =

∣∣∣∣1 3

4 6

∣∣∣∣ = −6

µ13 =

∣∣∣∣4 5

7 8

∣∣∣∣ = −3 µ23 =

∣∣∣∣1 2

7 8

∣∣∣∣ = −6 µ33 =

∣∣∣∣1 2

4 5

∣∣∣∣ = −3

Continuing from this point, we find the 9 = 3 · 3 cofactors γij = (−1)i+jµij.

γ11 = (−1)1+1µ11 = −3 γ21 = (−1)2+1µ21 = 6 γ31 = (−1)3+1µ31 = −3

γ12 = (−1)1+2µ12 = 6 γ22 = (−1)2+2µ22 = −12 γ32 = (−1)3+2µ32 = 6

γ13 = (−1)1+3µ13 = −3 γ23 = (−1)2+3µ23 = 6 γ33 = (−1)3+3µ33 = −3

We are now in position to form the 3× 3 cofactor matrix Γ as follows.

Γ =

−3 6 −3

6 −12 6

−3 6 −3


Observe that in this case, Γ is a symmetric matrix because each row of Γ is equal to the corresponding

column of Γ. Consequently, we have that adj(A) = Γt = Γ. Even more, the following holds.

adj(A)A =

−3 6 −3

6 −12 6

−3 6 −3

1 2 3

4 5 6

7 8 9

 =

0 0 0

0 0 0

0 0 0

 = O3×3 = 0I3×3 = det(A)I3×3

We will demonstrate next that the observations and patterns that have held across our examples

are indicative of a general relationship between a square matrix and its adjugate.

Proposition 2.2.7. Given any n× n matrix A, we have that adj(A)A = det(A)In×n.

Proof. By Definition 2.2.4, we have that adj(A) = Γt, where Γ is the cofactor matrix of A. By

Definition 2.2.3, the (i, j)th component of Γ is the (i, j)th cofactor γij of A. By Definition 2.2.2, it

follows that γij = (−1)i+j det(Aij), where Aij is the (n−1)×(n−1) submatrix of A obtained from A
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by deleting the ith row and jth column of A. Consequently, the (i, j)th component of adj(A) is the

(j, i)th component of Γ, i.e., the (j, i)th cofactor γji = (−1)i+j det(Aji) of A. By Definition 1.2.1, we

note that the (i, j)th component of adj(A)A is the sum of the products of the (i, k)th component of

adj(A) and the (k, j)th component of A for each integer 1 ≤ k ≤ n, i.e., the (i, j)th component of

adj(A)A is
∑n

k=1(−1)i+kakj det(Aki). By Definition 2.1.1, we conclude that the (i, i)th components

of adj(A)A are exactly det(A) because these are obtained from the aforementioned sum by setting

i = j. Consequently, it suffices to prove that
∑n

k=1(−1)i+kakj det(Aki) = 0 whenever i ̸= j.

Consider the n × n matrix B obtained from A by replacing the ith column of A with the jth

column of A. Observe that for each integer 1 ≤ k ≤ n, we have that bki = akj because the ith

column of B is equal to the jth column of A. Even more, we have that Bki = Aki for all integers

1 ≤ k ≤ n because A and B only differ in the ith column. By Corollary 2.1.13, we have that

0 = det(B) =
n∑

k=1

(−1)i+kbki det(Bki) =
n∑

k=1

(−1)i+kakj det(Aki).

We conclude therefore that the non-diagonal components of adj(A)A are zero, as desired.

Proposition 2.2.8. Given any n× n matrix A, we have that adj(At) = adj(A)t. Put another way,

the adjugate of the transpose is the transpose of the adjugate.

Proof. Crucially, observe that deleting the ith row and jth column of At is the same as deleting the

ith column and jth row of A and taking its transpose because the ith row of At is the ith column

of A and the jth column of At is the jth row of A. Consequently, we have that (At)ij = (Aji)
t. By

the underlying definitions of the adjugate, the (i, j)th component of adj(At) is (−1)i+j det((At)ij),

hence by our opening remarks, the (i, j)th component of adj(At) is exactly (−1)i+j det((Aji)
t). By

Proposition 2.1.12, it follows that the (i, j)th component of adj(At) is (−1)i+j det(Aji). Considering

that this is the (j, i)th component of adj(A) by definition, we conclude that the (i, j)th component of

adj(At) is the (i, j)th component of adj(A)t, hence the two matrices in consideration are equal.

Corollary 2.2.9. Given any n× n matrix A, we have that A adj(A) = det(A)In×n.

Proof. By Proposition 2.2.7, we have that adj(At)At = det(At)In×n. By Proposition 2.1.12, we

have that det(At) = det(A) so that adj(At)At = det(A)In×n. By Proposition 2.2.8, we have that

adj(At) = adj(A)t so that adj(A)tAt = det(A)In×n. Last, by Proposition 1.2.8, we conclude that

det(A)In×n = det(A)I tn×n = (det(A)In×n)
t = (adj(A)tAt)t = (At)t(adj(A)t)t = A adj(A).

Theorem 2.2.10. Given any n×n matrix A, we have that A is invertible if and only if det(A) ̸= 0.

Proof. Certainly, if the determinant of A is nonzero, then Propositions 2.2.7 and 2.2.9 imply that(
1

det(A)
adj(A)

)
A = In×n = A

(
1

det(A)
adj(A)

)
and A−1 = 1

det(A)
adj(A). Conversely, if det(A) = 0, then adj(A)A = det(A)In×n = On×n. Conse-

quently, there is no n× n matrix B such that AB = In×n = BA, i.e., A is not invertible.
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Example 2.2.11. By Example 2.1.2, the following 3× 3 matrix is not invertible.

A =

1 2 3

4 5 6

7 8 9


Example 2.2.12. By Example 2.1.3, the following 3× 3 matrix is invertible.

A =

1 1 0

1 0 1

0 1 1


Example 2.2.13. By Example 2.1.14, the following 3× 3 matrix is not invertible.

A =

1 2 3

2 4 6

3 6 9


We could have also noticed that A is row equivalent to a matrix with a zero row.

Example 2.2.14. By Example 2.1.15, the following 3× 3 matrix is invertible.

A =

1 2 0

1 2 1

2 1 1


Example 2.2.15. By Example 2.1.16, the following 3× 3 matrix is invertible.

A =

0 0 1

0 1 0

1 0 0


We could have also noticed that it is row equivalent to the 3× 3 identity matrix.

Before we conclude this section, we state a critically important property of determinants.

Theorem 2.2.16. Given any n× n matrices A and B, we have that det(AB) = det(A) det(B).

Proof. Consider the unique reduced row echelon form R = RREF(A) for A. By Corollary 2.1.13,

there exists a scalar α that is uniquely determined by the elementary row operations E1, . . . , Ek

that are used to convert R to A such that det(A) = α det(R) and Ek · · ·E1R = A. Either R has a

row consisting of zeros, or it is the n×n identity matrix. By the aforementioned corollary, if R has a

row consisting of zeros, then det(R) = 0 so that det(A) = α det(R) = 0 and det(A) det(B) = 0. By

Theorem 2.2.10, we have that det(AB) is nonzero if and only if AB is invertible if and only if RB is

invertible. By assumption that R has a row consisting of zeros, it follows that RB is not invertible

because it has a column consisting of zeros, and we conclude that det(AB) = 0. Conversely, if R is

the n×n identity matrix, then det(A) = α det(R) = α and A = Ek · · ·E1R = Ek · · ·E1, from which

we conclude that det(A) det(B) = α det(B) = det(Ek · · ·E1B) = det(Ek · · ·E1RB) = det(AB).
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2.3 Polynomials Associated to Matrices

We introduce in this section two polynomial invariants of an n×nmatrix. Both of these polynomials

are related to the determinant of a matrix associated with the given square matrix. Explicitly,

suppose that A is any n× n matrix. We will adopt the shorthand I for the n× n identity matrix.

Given any indeterminate x, we refer to the matrix xI − A as the characteristic matrix of A.

Both A and I are by assumption n× n matrices, hence the characteristic matrix xI −A is likewise

an n × n matrix. Even more, we note that diagonal of xI − A consists of x − aii for each integer

1 ≤ i ≤ n and the off-diagonal components of xI − A are the off-diagonal components of A with

the opposite sign. Explicitly, we have that xI − A =
[
xδij − aij

]
1≤i≤n
1≤j≤n

for the Kronecker delta δij.

Example 2.3.1. Consider the following 2× 2 matrix A and its characteristic matrix xI − A.

A =

[
1 2

2 1

]
xI − A =

[
x− 1 −2

−2 x− 1

]
We note that det(xI − A) = (x− 1)(x− 1)− (−2)(−2) = x2 − 2x− 3 = (x− 3)(x+ 1).

Example 2.3.2. Consider the following 3× 3 matrix A and its characteristic matrix xI − A.

A =

1 1 0

1 0 1

0 1 1

 xI − A =

x− 1 −1 0

−1 x −1

0 −1 x− 1


We note that det(xI−A) = (x−1)[x(x−1)−(−1)(−1)]−(−1)[(−1)(x−1)−(−1)(0)]. By simplifying

this, we obtain that det(xI −A) = (x− 1)(x2 − x− 1)− (x− 1), hence factoring by grouping yields

that det(xI − A) = (x− 1)(x2 − x− 1− 1) = (x− 1)(x2 − x− 2) = (x− 1)(x− 2)(x+ 1).

Considering that we may always expand the determinant of the n×n characteristic matrix xI−A

along the first row, it follows that χA(x) = det(xI −A) must be a polynomial in indeterminate x of

degree n because the product of the diagonal elements of xI−A form a polynomial in indeterminate x

of degree n. (Concretely, one can prove this by induction.) Consequently, we refer to the determinant

det(xI −A) of the characteristic matrix of A as the characteristic polynomial of A. One of the

first observations that we can make regarding the characteristic polynomial is the following.

Proposition 2.3.3. Given any n × n matrix A with characteristic polynomial χ(x), we have that

det(A) = (−1)nχ(0). Put another way, the constant term of χ(x) is (−1)n det(A).

Proof. By definition of the characteristic polynomial, we have that χ(0) = det(0I −A) = det(−A).

Consequently, by Proposition 2.1.6, it follows that χ(0) = (−1)n det(A), hence the result can be

obtained by multiplying both sides of this identity by (−1)n and using the fact that (−1)2n = 1.

Example 2.3.4. Given any 2× 2 matrix A with characteristic polynomial χ(x) = x2 − 2x+ 1, we

must have that det(A) = (−1)2(02 − 2(0) + 1) = 1.

Example 2.3.5. Given any 3× 3 matrix A with characteristic polynomial χ(x) = x3 − ex2 + π, we

must have that det(A) = (−1)3(03 − e(0)2 + π) = −π.
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Given any polynomial p(x) = ckx
k + · · ·+ c1x+ c0, we can “plug in” any n× n matrix A to the

polynomial p(x) to obtain a matrix polynomial p(A) = ckA
k + · · · + c1A + c0I. Explicitly, the

matrices Ai for each integer 1 ≤ i ≤ k are given by the i-fold product of the matrix A with itself,

and the constant term c0 of p(x) becomes the scalar matrix c0I in the matrix polynomial p(A).

Example 2.3.6. Consider the 2×2 matrix A from Example 2.3.1. Observe that the following hold.

A− 3I =

[
1 2

2 1

]
− 3

[
1 0

0 1

]
=

[
1 2

2 1

]
−

[
3 0

0 3

]
=

[
−2 2

2 −2

]

A+ I =

[
1 2

2 1

]
+

[
1 0

0 1

]
=

[
2 2

2 2

]

(A− 3I)(A+ I) =

[
−2 2

2 −2

] [
2 2

2 2

]
=

[
0 0

0 0

]
Consequently, the matrix polynomial χ(A) = (A− 3I)(A+ I) yields the 2× 2 zero matrix.

Example 2.3.7. Consider the 3×3 matrix A from Example 2.3.2. Observe that the following hold.

A− I =

1 1 0

1 0 1

0 1 1

−

1 0 0

0 1 0

0 0 1

 =

0 1 0

1 −1 1

0 1 0



A− 2I =

1 1 0

1 0 1

0 1 1

− 2

1 0 0

0 1 0

0 0 1

 =

1 1 0

1 0 1

0 1 1

−

2 0 0

0 2 0

0 0 2

 =

−1 1 0

1 −2 1

0 1 −1



A+ I =

1 1 0

1 0 1

0 1 1

+

1 0 0

0 1 0

0 0 1

 =

2 1 0

1 1 1

0 1 2



(A− I)(A− 2I)(A+ I) =

0 1 0

1 −1 1

0 1 0

−1 1 0

1 −2 1

0 1 −1

2 1 0

1 1 1

0 1 2



=

 1 −2 1

−2 4 −2

1 −2 1

2 1 0

1 1 1

0 1 2

 =

0 0 0

0 0 0

0 0 0


Consequently, the matrix polynomial χ(A) = (A− I)(A− 2I)(A+ I) yields the 3× 3 zero matrix.

Our next theorem demonstrates that these examples are indicative of a general phenomenon.
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Theorem 2.3.8 (Cayley-Hamilton Theorem). Given any n× n matrix A with characteristic poly-

nomial χ(x), it holds that χ(A) = O, i.e., the characteristic polynomial of A annihilates A.

Proof. Because we have the adjugate matrix at our disposal from our discussion in the previous

section, we will incorporate it into this proof; however, there are a wealth of interesting proofs of

this fact that the interested reader is encouraged to discover. Considering that the characteristic

matrix xI − A of A is an n × n matrix whose coefficients lie in a polynomial ring, it admits an

adjugate matrix adj(xI−A) such that adj(xI−A)(xI−A) = det(xI−A)I = χ(x)I by Proposition

2.2.7 and the definition of the characteristic polynomial χ(x). On the other hand, the components of

the n×n matrices xI −A, adj(xI −A), and χ(x)I are polynomials in indeterminate x, hence these

matrices can be written uniquely as formal polynomials with matrix coefficients: we must simply

determine the part of the matrices corresponding to each monomial xi for each integer 0 ≤ i ≤ n.

Explicitly, the characteristic matrix xI − A is already written as a formal polynomial with matrix

coefficients: indeed, the degree-one “coefficient” is the identity matrix I, and the “constant term”

is the matrix A. Even more, if we write χ(x) = xn + cn−1x
n−1 + · · · + c1x + c0 for some scalars

cn−1, . . . , c1, c0, then the unique expression of χ(x)I as a formal polynomial with matrix coefficients

is χ(x)I = xnI + cn−1x
n−1I + · · ·+ c1xI + c0I. Consider the unique n×n matrices Bn−1, . . . , B1, B0

such that adj(xI − A) = xn−1Bn−1 + · · · + xB1 + B0. Expanding the left- and right-hand sides of

the identity adj(xI − A)(xI − A) = χ(x)I according to our formal polynomial factorizations, we

find that (xn−1Bn−1 + · · · + xB1 + B0)(xI − A) = xnI + cn−1x
n−1I + · · · + c1xI + c0I. Expanding

the product on the left-hand side and comparing the terms with xi, we obtain the following.

Bn−1 = I (the coefficient of xn)

Bn−2 −Bn−1A = cn−1I (the coefficient of xn−1)

...

B0 −B1A = c1I (the coefficient of x)

−B0A = c0I (the constant term)

Crucially, we may now multiply each subsequent identity from bottom to top by Ai for the integer

0 ≤ i ≤ n corresponding to the monomial xi to find the following identities.

Bn−1A
n = An (the coefficient of xn)

Bn−2A
n−1 −Bn−1A

n = cn−1A
n−1 (the coefficient of xn−1)

...

B0A−B1A
2 = c1A (the coefficient of x)

−B0A = c0I (the constant term)

Last, summing the left-hand column yields a telescoping sum that results in the zero matrix;

however, the right-hand sums to the n× n matrix An + cn−1A
n−1 + · · ·+ c1A+ c0I = χ(A).

One immediate consequence of the Cayley-Hamilton Theorem is that for every n× n matrix A,

there exists a unique monic polynomial µA(x) of least degree such that µA(A) = O. We refer to

this polynomial as the minimal polynomial of A. Explicitly, a monic polynomial is one whose
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leading coefficient is one. By the Cayley-Hamilton Theorem, the characteristic polynomial χA(x) of

A is a monic polynomial satisfying that χA(A) = O, hence there exists a monic polynomial with the

desired property. Consequently, we can find a monic polynomial of least degree that annihilates A

by the Well-Ordering Principle applied to the nonempty set of positive integers corresponding

to the degree of monic polynomials that annihilate A. Even more, the uniqueness of the minimal

polynomial comes from the fact that if we take two monic polynomials of least degree that both

annihilate A, then each of the polynomials will divide the other, hence they must be equal.

Even if this line of argument is not immediately clear, what matters is the following.

Proposition 2.3.9. Given any n×n matrix A, its minimal polynomial µ(x) divides every polynomial

p(x) such that p(A) = O. Consequently, the minimal polynomial of A must divide the characteristic

polynomial of A, so it is either the characteristic polynomial of A or a proper factor of it.

Proof. By the Division Algorithm for polynomials, there exist unique polynomials q(x) and r(x)

such that p(x) = q(x)µ(x) + r(x) and the degree of r(x) is strictly smaller than the degree of µ(x).

By assumption, we have that p(A) = O. By definition of µ(x), we have that µ(A) = O. Combined,

these observations imply that O = p(A) = q(A)µ(A)+ r(A) = q(A)O+ r(A) = r(A). Consequently,

we have found a polynomial r(x) of lesser degree than µ(x) that annihilates A. Even more, if r(x)

is nonzero, then we may multiply by the multiplicative inverse of its leading coefficient to obtain a

monic polynomial of lesser degree than µ(x) that annihilates A. Because this is impossible by the

definition of µ(x), we conclude that r(x) must be the zero polynomial so that µ(x) divides p(x).

By the Cayley-Hamilton Theorem, the characteristic polynomial of A annihilates A, so it must

be divisible by the minimal polynomial of A by the argument of the preceding paragraph.

Example 2.3.10. Consider the 2×2 matrix A from Examples 2.3.1 and 2.3.6. We proved previously

that the characteristic polynomial of A is χ(x) = (x−3)(x+1); neither the polynomial x−3 nor x+1

annihilates A by the previous example, hence we conclude by Proposition 2.3.9 that µ(x) = χ(x).

Example 2.3.11. Consider the 3×3 matrix A from Examples 2.3.2 and 2.3.7. We proved previously

that the characteristic polynomial of A is χ(x) = (x − 1)(x − 2)(x + 1). Observe that none of the

linear polynomials x − 1 or x − 2 or x + 1 annihilate A by the previous example. Even more, the

quadratic polynomials (x − 1)(x − 2) and (x − 1)(x + 1) and (x − 2)(x + 1) do not annihilate A.

Consequently, we conclude by Proposition 2.3.9 that µ(x) = χ(x).

Example 2.3.12. Consider the 3 × 3 zero matrix O. Observe that the characteristic polynomial

of O is given by χ(x) = det(xI −O) = det(xI) = x3 det(I) = x3; however, the minimal polynomial

of O is simply µ(x) = x. Generally, this is similarly the case for all n× n zero matrices.

Even though the minimal polynomial of a matrix is not necessarily the characteristic polynomial

of the matrix, we know by Proposition 2.3.9 that the minimal polynomial is always a factor of the

characteristic polynomial. Consequently, the roots of the minimal polynomial are always among

the roots of the characteristic polynomial. Explicitly, for any scalar c such that µ(c) = 0, we must

have that χ(c) = 0. We refer to such a scalar c such that χA(c) = 0 as a characteristic value of

A. We note that the characteristic values of A are precisely those scalars such that det(cI−A) = 0.

Proposition 2.3.13. Given any n× n matrix A, the following are equivalent.

1.) We have that χA(c) = 0.
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2.) We have that det(cI − A) = 0.

3.) We have that cI − A is not invertible.

Proof. By definition of the characteristic polynomial χA(x) of A, it follows that the first two state-

ments are equivalent. By Proposition 2.2.10, the second and third statements are equivalent.

Under this identification, we can drastically narrow down the possibilities for µA(x).

Proposition 2.3.14. Given any n×n matrix A, the characteristic polynomial of A and the minimal

polynomial of A have the same roots. Particularly, the minimal polynomial of A is divisible by every

irreducible polynomial factor of the characteristic polynomial of A.

Proof. We will prove that µA(c) = 0 if and only if c is a characteristic value of A. By the Factor

Theorem, if we assume that µA(c) = 0, then µA(x) = (x−c)q(x) for some polynomial q(x) of strictly

lesser degree than µA(x). By definition of µA(x), we must have that q(A) is nonzero. Consequently,

we have that O = µA(A) = (A − cI)q(A), hence cI − A cannot be invertible because its product

with the nonzero matrix −q(A) is the zero matrix. We conclude by Proposition 2.3.13 that c is a

characteristic value of A. Conversely, if c is a characteristic value of A, then cI−A is not invertible,

hence there exists a nonzero n × n matrix B such that (cI − A)B = O or cB = AB. Crucially,

for any integer 1 ≤ k ≤ n, we have that AkB = Ak−1(AB) = Ak−1(cB) = c(Ak−1B) = · · · = ckB

by Propositions 1.2.5 and 1.2.6. Consequently, it follows that O = OB = µA(A)B = µA(c)B.

Considering that µA(c) is a scalar and B is a nonzero matrix, this is only possible if µA(c) = 0.

Example 2.3.15. Consider the following 3× 3 matrix A and its characteristic matrix xI − A.

A =

−1 0 0

0 1 0

0 0 −1

 xI − A =

x+ 1 0 0

0 x− 1 0

0 0 x+ 1


One can readily verify that χ(x) = (x+1)2(x−1) is the characteristic polynomial of A. Consequently,

by Proposition 2.3.14, we must have that µ(x) = χ(x) or µ(x) = (x+1)(x−1) = x2−1. Considering

that A2 = I, it follows that A2 − I = O so that µ(x) = x2 − 1.

Example 2.3.16. Consider the following 3× 3 matrix A and its characteristic matrix xI − A.

A =

1 1 1

2 2 2

3 3 3

 xI − A =

x− 1 −1 −1

−2 x− 2 −2

−3 −3 x− 3


By definition, the characteristic polynomial of A is found by computing the following.

χ(x) = det(xI − A) = (x− 1)[(x− 2)(x− 3)− 6] + [−2(x− 3)− 6] + [6 + 3(x− 2)]

= (x− 1)(x2 − 5x+ 6− 6)− (2x− 6 + 6) + (6− 3x− 6)

= (x− 1)(x2 − 5x)− 5x

= x3 − 6x2
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Considering that χ(x) = x3 − 6x2 = x2(x− 6), it follows that µ(x) = χ(x) or µ(x) = x(x− 6). We

conclude that µ(x) = x(x− 6) because A(A− 6I) = O, as the following calculation shows.

A(A− 6I) =

1 1 1

2 2 2

3 3 3

−5 1 1

2 −4 2

3 3 −3

 =

0 0 0

0 0 0

0 0 0


Explicitly, one need only check that the first row is zero because the second and third rows of

A(A− 6I) are merely a scalar multiple of the first row of A(A− 6I) by definition of A.

2.4 Eigenvalues and Eigenvectors

Given any linear transformation T : V → V from any vector space V to itself, we refer to a vector

v ∈ V as an eigenvector of T corresponding to a scalar α if and only if we have that T (v) = αv.

Example 2.4.1. Consider the real vector space F (R,R) of functions f : R → R.We have seen many

times already (and we know from calculus) that the derivative d
dx

defines a linear transformation

from the vector space C1(R) of continuously differentiable functions to itself. Particularly, observe

that for any real number α, the function f(x) = eαx is continuously differentiable and satisfies that

d

dx
eαx = αeαx.

Consequently, eαx is an eigenvector of C1(R) corresponding to the real number α.

Example 2.4.2. Consider the real vector space R3×1 of real 3× 1 matrices. Given any real 3× 3

matrix A, we may define a linear transformation TA : R3×1 → R3×1 by declaring that TA(X) = AX.

Particularly, if A is a diagonal real 3 × 3 matrix, then the standard basis vectors E1 = (1, 0, 0),

E2 = (0, 1, 0), and E3 = (0, 0, 1) are three examples of eigenvectors of the linear transformation TA.

TA(E1) = AE1 =

a11 0 0

0 a22 0

0 0 a33

10
0

 =

a110
0

 = a11

10
0

 = a11E1

TA(E2) = AE2 =

a11 0 0

0 a22 0

0 0 a33

01
0

 =

 0

a22
0

 = a22

01
0

 = a22E2

TA(E3) = AE3 =

a11 0 0

0 a22 0

0 0 a33

00
1

 =

 0

0

a33

 = a3

00
1

 = a33E3

Explicitly, we have that Ei is an eigenvector of TA corresponding to the scalar aii.

Certainly, the zero vector is an eigenvector of every linear transformation that corresponds to

every scalar α: indeed, we have that T (O) = O = αO for all scalars α. Consequently, we will restrict
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our attention to those nonzero vectors that are eigenvectors of T. Given any nonzero vector v ∈ V

such that T (v) = αv for some scalar α, we will say that α is an eigenvalue of T corresponding to

the eigenvector v of T. Crucially, the following uniqueness property of eigenvalues holds.

Proposition 2.4.3. Given any linear transformation T : V → V from a vector space V to itself, if

v is an eigenvector of T corresponding to an eigenvalue α, then the scalar α is uniquely determined

by its eigenvector v in the sense that if T (v) = βv for any scalar β, we must have that β = α.

Proof. On the contrary, we will assume that β and α are distinct. Consequently, we have that α−β

is a nonzero scalar. By assumption that T (v) = βv and by hypothesis that v is an eigenvector

of T corresponding to the eigenvalue α, we have that αv = T (v) = βv so that αv − βv = O and

(α − β)v = O. Considering that α − β is a nonzero scalar, we can multiply both sides of this

identity by its inverse to obtain that v = O. But this is impossible: by hypothesis that v admits an

eigenvalue α, we must have that v is a nonzero vector by definition of an eigenvalue.

Consequently, if a nonzero vector v ∈ V admits an eigenvalue α, then that scalar α is uniquely

determined by v, and there cannot exist another scalar β such that T (v) = βv.

Equivalently, we can define the eigenvectors of T as the vectors of V that lie in the kernel of

some linear transformation from V to itself that can be obtained from T.

Proposition 2.4.4. Given any linear transformation T : V → V from a vector space V to itself,

the following statements are equivalent.

1.) We have that v is an eigenvector of T corresponding to some scalar α.

2.) We have that v ∈ ker(αI − T ) for some scalar α and the identity transformation I : V → V.

Proof. By definition, if v is an eigenvector of T corresponding to some scalar α, then we must have

that T (v) = αv = αI(v) for the identity transformation I : V → V, from which it follows by

subtraction that αI(v) − T (v) = O and (αI − T )(v) = O so that v lies in the kernel of the linear

transformation αI − T. Conversely, if v ∈ ker(αI − T ) for some scalar α, then by definition of the

kernel of αI−T, we have that O = (αI−T )(v) = αI(v)−T (v) = αv−T (v) so that T (v) = αv.

Likewise, we can equivalently define the eigenvalues of T as the scalars α for which the linear

transformation αI − T from the vector space V to itself is not invertible.

Proposition 2.4.5. Given any linear transformation T : V → V from a vector space V to itself,

the following statements are equivalent.

1.) We have that α is an eigenvalue of T corresponding to some nonzero vector v ∈ V.

2.) We have that αI − T is not invertible for the identity transformation I : V → V.

Proof. By definition, if α is an eigenvalue of T corresponding to some nonzero vector v ∈ V, then we

must have that T (v) = αv = αI(v) for the identity transformation I : V → V, from which it follows

by subtraction that αI(v)−T (v) = O and (αI −T )(v) = O so that v lies in the kernel of the linear

transformation αI − T. Considering that v is a nonzero vector of V, we conclude by Proposition

1.11.6 and Corollary 1.13.7 that αI − T is not invertible. Conversely, by the same proposition and

corollary as before, if αI − T is not invertible, then there exists a nonzero vector v ∈ V such that

O = (αI − T )(v) = αI(v)− T (v) = αv − T (v) so that T (v) = αv and α is an eigenvalue of v.
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Based on the previous two propositions, we are in a very profitable position to relate our study

of the eigenvectors and eigenvalues of a linear transformation back to our previous foray into deter-

minants of square matrices and their characteristic polynomials. Explicitly, for any linear transfor-

mation T : V → V from a vector space V of dimension n to itself and any ordered basis v1, . . . , vn
of V, we obtain an n × n matrix A that behaves as the linear transformation T on the coordinate

vectors of V with respect to the chosen ordered basis vectors. Consequently, we may identify the

linear transformation T and the n×n matrix A in this sense. We will soon see that the specification

of the ordered basis of V is merely a choice that we can make to simplify A as much as possible.

Particularly, if we were to pick another ordered basis of V, then the matrix representation A of T

with respect to the original (convenient) ordered basis and the matrix representation B of T with

respect to this new ordered basis would possess the same properties. Even more, for any scalar α,

the matrix representation for the linear transformation αI −T is given by the n×n matrix αI −A

for the n×n identity matrix I. Based on this observation, we define the determinant det(αI−T )

of the linear transformation αI − T as the determinant det(αI − A) of the n × n matrix αI − A.

We will also define the characteristic polynomial of T as det(xI −T ). By the previous sentence,

this is nothing more than the characteristic polynomial of the matrix A that represents T.

Conversely, we may also translate our present terminology about eigenvalues and eigenvectors

of linear transformations into meaningful statements involving matrices. We will say that a real

n× 1 vector X is an eigenvector of a real n× n matrix A if it holds that AX = cX for some real

number c. Like before, this is equivalent to the property that (cI −A)X = O for the n× n identity

matrix I and the n × 1 zero vector O. Consequently, the n × 1 zero vector O is an eigenvector of

any real n × n matrix. Even more, we will say that c is an eigenvalue of a real n × n matrix A

if and only if there exists a nonzero real n× 1 matrix X such that AX = cX; such a nonzero real

n× 1 matrix X is called an eigenvector of A corresponding to the eigenvalue c of A.

Our next proposition summarizes the relationship between eigenvalues of a linear transformation

T from a finite-dimensional vector space to itself and the eigenvalues of any n×nmatrix representing

T. Crucially, it also provides a necessary and sufficient condition for the existence of eigenvalues.

Proposition 2.4.6. Given any linear transformation T : V → V from a (real) vector space V of

dimension n to itself and any (real) n × n matrix A that represents T with respect to some fixed

ordered basis of V, the following statements are equivalent.

1.) We have that c is an eigenvalue of T corresponding to some nonzero vector v ∈ V.

2.) We have that c is an eigenvalue of A corresponding to some nonzero (real) n× 1 matrix X.

3.) We have that det(cI − A) = 0, i.e., we have that c is a root of χ(x) = det(xI − A).

Put another way, the eigenvalues of T are precisely the eigenvalues of any matrix A that represents

T, and these eigenvalues are exactly the roots of the characteristic polynomial det(xI − A) of A.

Proof. We have that c is an eigenvalue of T corresponding to some nonzero vector v ∈ V if and only

if v lies in the kernel of the linear transformation cI − T if and only if the coordinate vector X of v

with respect to the fixed ordered basis of V satisfies that (cI−A)X = O if and only if det(cI−A) = 0.

Explicitly, the first equivalence holds by Proposition 2.4.4; the second equivalence holds by definition

of the matrix representation A of T ; and the third equivalence holds by Proposition 2.2.10.
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Example 2.4.7. Consider the following diagonal real 3× 3 matrix.

A =

a 0 0

0 b 0

0 0 c


Observe that the characteristic matrix xI−A is a diagonal matrix with diagonal components x−a,

x − b, and x − c. By [Lan86, Exercise 3] on page 208, the determinant of a diagonal matrix is the

product of its diagonal components, hence we have that χ(x) = det(xI−A) = (x−a)(x− b)(x− c).

Consequently, the eigenvalues of A are simply the diagonal components a, b, and c.

Example 2.4.8. Consider the 2× 2 matrix A from Example 2.3.1.

A =

[
1 2

2 1

]
We showed that χ(x) = det(xI − A) = (x− 3)(x+ 1), hence the eigenvalues of A are −1 and 3.

Example 2.4.9. Consider the 3× 3 matrix A from Example 2.3.2.

A =

1 1 0

1 0 1

0 1 1


Considering that χ(x) = det(xI−A) = (x− 1)(x− 2)(x+1), the eigenvalues of A are −1, 1, and 2.

Example 2.4.10. Consider the 3× 3 matrix A from Example 2.3.16.

A =

1 1 1

2 2 2

3 3 3


We demonstrated previously that χ(x) = det(xI − A) = x2(x− 6), hence the eigenvalues of A are

0 (with multiplicity two) and 6. We will soon return to this notion of multiplicity.

Once we have found the eigenvalues of a matrix by computing the roots of its characteristic

polynomial, the hunt is on to determine the eigenvectors of A corresponding to these eigenvalues.

We note that if c is an eigenvalue of an n × n matrix A, then by the proof of Proposition 2.4.6,

an eigenvector of A corresponding to the eigenvalue c of A is simply an n× 1 matrix X such that

(cI − A)X = O. Consequently, in practice, the way to find the eigenvectors of an n × n matrix A

corresponding to an eigenvalue c of A is to solve the matrix equation (cI − A)X = O.

Example 2.4.11. Consider the following diagonal real 3× 3 matrix with eigenvalues 1, 2, and 3.

A =

1 0 0

0 2 0

0 0 3


By definition, an eigenvector of A corresponding to the eigenvalue 1 of A is a real 3× 1 matrix X

such that (I − A)X = O. By interpreting this in the present context, we obtain the following. 0

−2y

−3z

 =

0 0 0

0 −2 0

0 0 −3

xy
z

 =

00
0


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Consequently, we must have that −2y = 0 and −3z = 0 so that y = 0 and z = 0, hence every real

3× 1 vector X = (x, 0, 0)t is an eigenvector of A corresponding to the eigenvalue 1.

Example 2.4.12. Consider the 2× 2 matrix A from Example 2.4.8 with eigenvalues −1 and 3.

A =

[
1 2

2 1

]
We have that X = (x, y)t is an eigenvector of A corresponding to the eigenvalue −1 if and only if

(−I − A)X = O if and only if (−I − A)(x, y)t = (0, 0)t if and only if[
−2x− 2y

−2x− 2y

]
=

[
−2 −2

−2 −2

] [
x

y

]
=

[
0

0

]
if and only if x+ y = 0 if and only if y = −x. Consequently, the eigenvectors of A corresponding to

the eigenvalue −1 of A are precisely the real 2× 1 matrices X = (x,−x)t for some real number x.

Example 2.4.13. Consider the 3× 3 matrix A from Example 2.4.9 with eigenvalues −1, 1, and 2.

A =

1 1 0

1 0 1

0 1 1


We have that X = (x, y, z)t is an eigenvector of A corresponding to the eigenvalue 2 if and only if

(2I − A)X = O if and only if (2I − A)(x, y, z)t = (0, 0, 0)t if and only if x− y

−x+ 2y − z

−y + z

 =

 1 −1 0

−1 2 −1

0 −1 1

xy
z

 =

00
0


if and only if x − y = 0 and −x + 2y − z = 0 and −y + z = 0 if and only if y = x and z = y.

Consequently, the eigenvectors of A corresponding to the eigenvalue 2 of A are precisely the real

3× 1 matrices X = (x, x, x)t for some real number x.

Example 2.4.14. Consider the 3× 3 matrix A from Example 2.4.10 with eigenvalues 0 and 6.

A =

1 1 1

2 2 2

3 3 3


We have that X = (x, y, z)t is an eigenvector of A corresponding to the eigenvalue 0 if and only if

−AX = O if and only if AX = O if and only if A(x, y, z)t = (0, 0, 0)t if and only if x+ y + z

2x+ 2y + 2z

3x+ 3y + 3z

 =

1 1 1

2 2 2

3 3 3

xy
z

 =

00
0


if and only if x + y + z = 0 if and only if z = −x − y. Consequently, the eigenvectors of A

corresponding to the eigenvalue 0 of A are precisely the real 3× 1 matrices

X =

 x

y

−x− y

 =

 x

0

−x

+

 0

y

−y





84 CHAPTER 2. CANONICAL FORMS FOR MATRICES

for some real numbers x and y. Crucially, we note that in this example, the multiplicity of the root 0

in the characteristic polynomial of A is two, and two distinct variables appeared in the eigenvectors

of A corresponding to the eigenvalue 0. Once again, we will soon investigate further.

2.5 Eigenspaces

Given any linear transformation T : V → V from a vector space V to itself, we have previously

distinguished a vector v ∈ V as an eigenvector of T if there exists a scalar α such that T (v) = αv.

Consequently, the zero vector is an eigenvector of any linear transformation because it holds that

T (O) = O = αO for any scalar α. Even more, if v is a nonzero vector, then we say that v is an

eigenvector of T corresponding to the eigenvalue α of T if T (v) = αv. By the linearity of T, if v and

w are any eigenvectors of T corresponding to an eigenvalue α of T, then we have that

T (v + w) = T (v) + T (w) = αv + αw = α(v + w),

hence v + w is an eigenvector of T corresponding to the eigenvalue α. Likewise, for any scalar β,

we have that T (βv) = βT (v) = β(αv) = α(βv), from which it follows that βv is an eigenvector of

T corresponding to the eigenvalue α. Combined, these two observations prove the following.

Proposition 2.5.1. Given any linear transformation T : V → V from a vector space V to itself,

the collection Wα = {v ∈ V | T (v) = αv} of eigenvectors of V corresponding to an eigenvalue α of

T is a vector subspace of V that is called the eigenspace of T with respect to the eigenvalue α.

Remark 2.5.2. By Proposition 2.4.4, we may identify the eigenspace Wα and ker(αI − T ).

Example 2.5.3. Consider the following 3× 3 matrix of Example 2.4.11.

A =

1 0 0

0 2 0

0 0 3


We showed previously that the eigenvectors of A corresponding to the eigenvalue 1 are (x, 0, 0)t for

some real number x, hence we have that W1 = {X ∈ R3×1 | AX = X} = span{(1, 0, 0)t}.
Example 2.5.4. Consider the following 2× 2 matrix A from Example 2.4.12.

A =

[
1 2

2 1

]
We proved in that example that the eigenvectors ofA corresponding to the eigenvalue−1 are (x,−x)t

for some real number x, hence we have that W−1 = {X ∈ R2×1 | AX = −X} = span{(1,−1)t}.
Example 2.5.5. Consider the following 3× 3 matrix A from Example 2.4.13.

A =

1 1 0

1 0 1

0 1 1


Last section, we illustrated that the eigenvalues of A corresponding to the eigenvalue 2 are (x, x, x)t

for some real number x so that W2 = {X ∈ R3×1 | AX = 2X} = span{(1, 1, 1)t}.
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Example 2.5.6. Consider the following 3× 3 matrix A from Example 2.4.10.

A =

1 1 1

2 2 2

3 3 3


We demonstrated previously that the eigenvalues of A corresponding to the eigenvalue 0 are of the

form (x, 0,−x)t + (0, y,−y)t for some real numbers x and y. Consequently, the eigenspace of A

corresponding to the eigenvalue 0 is W0 = {X ∈ R3×1 | AX = O} = span{(1, 0,−1)t, (0, 1,−1)t}.
Our ultimate objective throughout this chapter is to study the canonical forms for a linear

transformation from a vector space to itself (or equivalently of an n × n matrix). Put simply,

these are representations of linear transformations (or matrices) by matrices that are (in a strict

sense) in “simplest form.” One of the most delightful examples of this occurs when the underlying

vector space on which the linear transformation is defined admits a basis of eigenvectors for the

linear transformation. Explicitly, let us assume that some vectors v1, . . . , vn form a basis for the

n-dimensional vector space V on which a linear transformation T : V → V is defined. Certainly,

the best case scenario is that the vectors v1, . . . , vn are actually eigenvectors of T corresponding to

distinct eigenvalues α1, . . . , αn, respectively: indeed, if this is the case, then the following hold.

T (v1) = α1v1 = α1v1 + 0v2 + · · ·+ 0vn

T (v2) = α2v2 = 0v1 + α2v2 + · · ·+ 0vn
...

T (vn) = αnvn = 0v1 + 0v2 + · · ·+ αnvn

Consequently, the n× n matrix A that represents T with respect to this ordered basis v1, . . . , vn is

a diagonal matrix! Explicitly, the jth column of A consists of zeros in all rows except the jth row,

and the component of the jth row of A is the eigenvalue αj corresponding to the eigenvector vj.

A =


α1 0 · · · 0

0 α2 · · · 0
...

...
. . .

...

0 0 · · · αn


Definition 2.5.7. We say that a linear transformation T : V → V from a vector space of dimension

n to itself is diagonalizable if there exists an ordered basis v1, . . . , vn of V such that T (vi) = αivi
for some scalars α1, . . . , αn. Put another way, a linear transformation from a finite-dimensional

vector space V to itself is diagonalizable if and only if V admits a basis of eigenvectors for T if and

only if T can be represented by a diagonal matrix with respect to some ordered basis of V.

Our first order of business is to provide a necessary and sufficient condition for the diagonalizabil-

ity of a linear transformation (or a square matrix). We must first demonstrate that the eigenvectors

of a linear transformation corresponding to distinct eigenvalues are linearly independent.

Proposition 2.5.8. Given any linear transformation T : V → V from a vector space V to itself, if

v1, . . . , vn are any eigenvectors of T corresponding respectively to the pairwise distinct eigenvalues

α1, . . . , αn of T, then the collection of eigenvectors {v1, . . . , vn} is linearly independent.
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Proof. We proceed by induction on the number n of eigenvectors present. By definition, if α1 is an

eigenvalue of T corresponding to the eigenvector v1 of T, then v1 is a nonzero vector, hence v1 is

linearly independent. Consider any eigenvectors v1, . . . , vn of T corresponding respectively to the

pairwise distinct eigenvalues α1, . . . , αn of T. We must show that if β1v1 + · · · + βnvn = O, then

β1 = · · · = βn = 0. Observe that if we apply T to the above relation of linear dependence, then

O = T (O) = T (β1v1 + · · ·+ βnvn) = β1T (v1) + · · ·+ βnT (vn) = β1α1v1 + · · ·+ βnαnvn

by assumption that vi is an eigenvector of T corresponding to the eigenvalue αi of T. On the other

hand, if we multiply our original relation of linear dependence by α1, then we find that

O = α1O = α1(β1v1 + · · ·+ βnvn) = β1α1v1 + · · ·+ βnα1vn.

By subtracting the second identity above from the first, we obtain a third identity

O = β2(α1 − α2)v2 + · · ·+ βn(α1 − αn)vn.

By induction, these n− 1 vectors are linearly independent, hence we conclude that βi(α1 − αi) = 0

for each integer 2 ≤ i ≤ n. Considering that α1 and αi are distinct eigenvalues for each integer

2 ≤ i ≤ n, we must have that α1−αi is nonzero. Cancelling the factor of α1−αi from each identity

βi(α1 − αi) = 0 yields that β2 = · · · = βn = 0, so our original relation of linear independence now

states that β1v1 = O. But this implies that β1 = 0 because v1 is nonzero by hypothesis.

Corollary 2.5.9. Given any linear transformation T : V → V from a vector space V to itself, if

T admits dim(V ) eigenvectors corresponding to dim(V ) distinct eigenvalues, then the collection of

eigenvectors of T form a basis for V. Consequently, in this case, we have that T is diagonalizable.

Particularly, if T admits dim(V ) distinct eigenvalues, then T must be diagonalizable.

Proof. By the fourth part of Theorem 1.8.10, every collection of dim(V ) linearly independent vectors

of V form a basis for V. By Proposition 2.5.8, eigenvectors corresponding to distinct eigenvalues are

linearly independent, hence any collection of dim(V ) eigenvectors corresponding to dim(V ) distinct

eigenvalues form a basis for V. By Definition 2.5.7, we conclude that T is diagonalizable: its matrix

representation with respect to any ordered basis of eigenvectors of T corresponding to distinct

eigenvalues of T is a diagonal matrix. Last, if T admits dim(V ) distinct eigenvalues, then T must

be diagonalizable because in this case, each of the dim(V ) distinct eigenvalues of T corresponds to

an eigenvector of T, i.e., there are dim(V ) linearly independent eigenvectors of T.

Example 2.5.10. Consider any linear transformation T : V → V from a vector space V of

dimension three to itself that is represented by the following 3× 3 matrix from Example 2.4.7.

A =

a 0 0

0 b 0

0 0 c


We demonstrated previously that the eigenvalues of T are a, b, and c corresponding to the respective

eigenvectors E1, E2, and E3. Consequently, T is diagonalizable. Of course, we did not need Corollary

2.5.9 to deduce this fact; we could have simply looked at the diagonal matrix A representing T.
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Example 2.5.11. Consider any linear transformation T : V → V from a vector space V of

dimension two to itself that is represented by the following 2× 2 matrix A from Example 2.4.8.

A =

[
1 2

2 1

]
We proved in that example that the eigenvalues of T are −1 and 3, hence by Corollary 2.5.9, we

conclude that T is diagonalizable because it admits dim(V ) = 2 distinct eigenvalues.

Example 2.5.12. Consider any linear transformation T : V → V from a vector space V of

dimension three to itself that is represented by the following 3× 3 matrix A from Example 2.4.9.

A =

1 1 0

1 0 1

0 1 1


We demonstrated in that example that T admits the dim(V ) = 3 distinct eigenvalues −1, 1, and 2,

hence by Corollary 2.5.9, it follows that T is diagonalizable.

Example 2.5.13. Consider any linear transformation T : V → V from a vector space V of

dimension three to itself that is represented by the following 3× 3 matrix A from Example 2.4.10.

A =

1 1 1

2 2 2

3 3 3


Even though we showed that T admits only two distinct eigenvalues 0 and 6, it turns out that T is di-

agonalizable. Explicitly, by Example 2.5.6, the eigenspace of A corresponding to the eigenvalue 0 has

dimension two: indeed, we have that W0 = {X ∈ R3×1 | AX = O} = span{(1, 0,−1)t, (0, 1,−1)t}.
Consequently, for any eigenvector X of A corresponding to the eigenvalue 6, it follows by Proposi-

tion 2.5.8 and Corollary 2.5.9 that {(1, 0,−1)t, (0, 1,−1)t, X} is an ordered basis for R3×1 consisting

of eigenvectors for A; thus, we conclude that the vectors v1, v2, and v3 of V corresponding to these

coordinate vectors in R3×1 form an ordered basis of V consisting of eigenvectors of T.

Example 2.5.13 illustrates that the condition of Corollary 2.5.9 is sufficient but not necessary

for the diagonalizability of T. Consequently, we seek more restrictive properties of T under which

T is diagonalizable and for which T is not diagonalizable if the properties are not satisfied. Before

we are able to state such properties explicitly, we need the following lemmas.

Lemma 2.5.14. Let V be a vector space with vector subspaces U and W. If U and W have finite

dimension, then U +W has finite dimension dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Proof. We must first recall the definitions of the attendant objects at hand. By Proposition 1.6.17,

we have that U +W = {u + w | u ∈ U and w ∈ W} is the vector subspace of V consisting of all

sums of a vector u ∈ U and a vector w ∈ W. Likewise, we have that U ∩W = {v ∈ V | v ∈ U ∩W}
is the vector subspace of V consisting of all vectors v ∈ V that lie in both U and W.

By the fifth part of Theorem 1.8.10, the vector subspace U ∩W of the finite-dimensional vector

spaces U and W admits a basis v1, . . . , vk. Even more, by Proposition 1.8.8, we may extend this
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to a basis v1, . . . , vk, uk+1, . . . , uℓ of U and a basis v1, . . . , vk, wk+1, . . . , wm of W. We claim that the

vectors v1, . . . , vk, uk+1, . . . , uℓ, wk+1, . . . , wm form a basis for U +W. Observe that in this case, we

have that dim(U +W ) = k+ (ℓ− k) + (m− k) = ℓ+m− k = dim(U) + dim(W )− dim(U ∩W ), as

desired. By definition, every vector of U +W can be written as u+ w for some vectors u ∈ U and

w ∈ W. Consequently, by our proposed basis, there exist unique scalars α1, . . . , αℓ such that

u = α1v1 + · · ·+ αkvkαk+1uk+1, . . . , αℓuℓ.

Likewise, there exist unique scalars β1, . . . , βm such that

w = β1v1 + · · ·+ βkvk + βk+1wk+1 + · · ·+ βℓwℓ.

Combined, these two observations demonstrate that every vector of U +W can be written as

u+ w = (α1 + β1)v1 + · · ·+ (αk + βk)vk + αk+1uk+1 + · · ·+ αℓuℓ + βk+1wk+1 + · · ·+ βmwm.

We conclude that U+W = span{v1, . . . , vk, uk+1, . . . , uℓ, wk+1, . . . , wm}, hence it remains to be seen

that these vectors are linearly independent. Consider any scalars α1, . . . , αℓ, βk+1, . . . , βm such that

α1v1 + · · ·+ αkvk + αk+1uk+1 + · · ·+ αℓuℓ + βk+1wk+1 + · · ·+ βmwm = O.

By subtracting the linear combination of wk+1, . . . , wm from both sides, we find that

−βk+1wk+1 − · · · − βmwm = α1v1 + · · ·+ αkvk + αk+1uk+1 + · · ·+ αℓuℓ

so that −βk+1wk+1 − · · · − βmwm lies in U. By assumption that the vectors wk+1, . . . , wm belong to

the vector space W in the first space, we must have that −βk+1wk+1 − · · · − βmwm lies in W, from

which we conclude that −βk+1wk+1−· · ·−βmwm lies in U ∩W. By appealing to our basis v1, . . . , vk
for U ∩W, we may find (unique) scalars γ1, . . . , γk such that

−βk+1wk+1 − · · · − βmwm = γ1v1 + · · ·+ γkvk.

Ultimately, we obtain a relation of linear dependence among the vectors v1, . . . , vk, wk+1, . . . , wm.

γ1v1 + · · ·+ γkvk + βk+1wk+1 + · · ·+ βmwm = O

By construction, these vectors are linearly independent, and we conclude that βk+1 = · · · = βm = 0.

By returning to our fourth displayed equation above, we find that

α1v1 + · · ·+ αkvk + αk+1uk+1 + · · ·+ αℓuℓ = O,

and the linear independence of v1, . . . , vk, uk+1, . . . , uℓ implies that α1 = · · · = αℓ = 0.

Given any subspaces U and W of a vector space V, we say that the sum U +W is direct if it

holds that U ∩W = {O}; in this case, there are no relations among the vectors of U and W.

Corollary 2.5.15. Let V be a vector space with vector subspaces U and W. If U and W have finite

dimension and U ∩W = {O}, then U +W has finite dimension dim(U +W ) = dim(U) + dim(W ).
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Proof. By Lemma 2.5.14, it suffices to note that dim(U ∩W ) = 0.

Lemma 2.5.16. Given any linear transformation T : V → V from a finite-dimensional vector

space V to itself, if α1, . . . , αk are the distinct eigenvalues of T and Wα1 , . . . ,Wαk
are the respective

eigenspaces of V, then dim(Wα1 + · · ·+Wαk
) = dim(Wα1)+ · · ·+dim(Wαk

). Particularly, an ordered

basis for Wα1 + · · ·+Wαk
consists of consecutive ordered bases for Wαi

for each integer 1 ≤ i ≤ k.

Proof. We proceed by induction on the number k of distinct eigenvalues of T. By Proposition 2.4.3,

we have that Wα1 ∩Wα2 = {O} for any pair of distinct eigenvalues α1 and α2 of T, hence the claim

follows from Corollary 2.5.15 in the case that k = 2. Given distinct eigenvalues α1, . . . , αk of T,

consider the vector spaces U = Wα1 and W = Wα2 + · · ·+Wαk
By Lemma 2.5.14, we have that

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Consider any vector v ∈ U ∩W. By definition, such a vector has the property that T (v) = α1v, and

it can be written as v2 + · · ·+ vk for some eigenvectors vi ∈ Wαi
, hence we have that

α1v = T (v) = T (v2 + · · ·+ vk) = T (v2) + · · ·+ T (vk) = α2v2 + · · ·+ αkvk.

By subtracting α1v1 from both sides, we obtain an expression of linear dependence

−α1v + α2v2 + · · ·+ αkvk = O.

By Proposition 2.5.8, we must have that α1 = · · · = αk = 0. But this is impossible: α1, . . . , αk

are distinct eigenvalues of T. Consequently, we must have that v = O. We conclude that the sum

U + W is direct, hence we have that dim(U + W ) = dim(U) + dim(W ). By induction, the sum

W = Wα2 + · · ·+Wαk
is direct, i.e., dim(Wα1 + · · ·+Wαk

) = dim(Wα1) + · · ·+ dim(Wαk
).

Theorem 2.5.17. Given any linear transformation T : V → V from a finite-dimensional vector

space V to itself with distinct eigenvalues α1, . . . , αk, the following conditions are equivalent.

1.) We have that T is diagonalizable.

2.) We have that χT (x) = (x− α1)
e1 · · · (x− αk)

ek and dim(Wαi
) = ei for each integer 1 ≤ i ≤ k.

3.) We have that dim(V ) = dim(Wα1) + · · ·+ dim(Wαk
).

Proof. By Definition 2.5.7, we have that T is diagonalizable if and only if there exists a basis of V

consisting of eigenvectors of T. Order these basis vectors such that the first e1 of them correspond

to the eigenvalue α1 and the next e2 of them correspond to the eigenvalue α2 and so on for each

integer up to and including k. Observe that the matrix representation A of T with respect to this

ordered basis is the diagonal matrix in which αi appears ei times along the diagonal. Consequently,

the characteristic matrix xI −A is the diagonal matrix in which x− αi appears ei times along the

diagonal, hence we have that χT (x) = det(xI − T ) = det(xI − A) = (x − α1)
e1 · · · (x − αk)

ek . We

claim that dim(Wαi
) = ei for each integer 1 ≤ i ≤ k. Considering that Wαi

can be identified with

ker(αiI −A) by Proposition 2.4.4 and the construction of the matrix representation of T, it follows

that dim(Wαi
) = nullity(αiI −A), i.e., dim(Wαi

) is equal to the number of zero rows in the square

matrix αiI − A. But by construction of A, there are exactly ei zero rows of αiI − A.
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Even more, if we assume that the second condition holds, then the third condition holds because

the dimension of V is equal the degree of the characteristic polynomial of T, and that degree is

exactly the sum of the exponents of the irreducible factors of the characteristic polynomial of T.

Last, if the third condition holds, then Wα1 + · · ·+Wαk
is a vector subspace of V of dimension

dim(Wα1 + · · ·+Wαk
) = dim(Wα1) + · · ·+ dim(Wαk

) = dim(V ) by Lemma 2.5.16. We conclude by

the sixth part of Theorem 1.8.10 that V = Wα1 + · · · +Wαk
is spanned by the set of eigenvectors

of T ; thus, by Proposition 1.8.6, it follows that V admits a basis of eigenvectors for T.

We have encountered diagonalizable matrices so far in this section; however, it is unfortunately

not true that every matrix is diagonalizable. We conclude this section with an example.

Example 2.5.18. Consider the following real 3× 3 matrix.

A =

0 1 0

0 0 0

0 0 0


Even though this matrix looks quite harmless and inconspicuous, it turns out that it is not diago-

nalizable. Explicitly, there is no basis of the real vector space R3×1 of real 3× 1 matrices in which

the matrix representation of the linear transformation that is left multiplication by A is diagonal.

Observe that the characteristic matrix xI − A is the following upper-triangular matrix.

xI − A =

x −1 0

0 x 0

0 0 x


Consequently, the characteristic polynomial of A is χ(x) = x3 so that 0 is the only eigenvalue of

A. By Theorem 2.5.17, we have that A is diagonalizable if and only if the eigenspace W0 of R3×1

corresponding to the eigenvalue 0 of A has dimension three. By definition, we have that X ∈ W0 if

and only if −AX = O if and only if −A(x, y, z)t = (0, 0, 0)t if and only if00
0

 =

0 −1 0

0 0 0

0 0 0

xy
z

 =

−y

0

0


if and only if −y = 0 if and only if y = 0. Consequently, we conclude that X ∈ W0 if and only if

there exist real numbers x and y such that X = (x, 0, z)t = x(1, 0, 0)t+ z(0, 0, 1)t. Put another way,

we have that W0 = span{(1, 0, 0)t, (0, 0, 1)t} so that dim(W0) = 2 and A is not diagonalizable.

We will therefore benefit from the development of tools to understand matrices that are not

diagonalizable. One natural question is whether a matrix that is not diagonalizable admits some

other adequately nice property. Even though the matrix of Example 2.5.18 is not diagonalizable, it

is at least upper-triangular, so perhaps there is some hope. We will soon focus our attention there.

2.6 The Spectral Theorem

Before we move away from our study of diagonalizable matrices, we reserve this section to discuss

and prove (as we much as we can of) the following fundamental theorem of real symmetric matrices.
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Theorem 2.6.1 (Spectral Theorem). Every real symmetric matrix is orthogonally diagonalizable.

Conversely, every real orthogonally diagonalizable matrix is symmetric.

Example 2.6.2. Consider the following real 3× 3 matrix.

A =

1 2 3

2 1 3

3 3 0


Certainly, we have that A is symmetric: it is straightforward to verify that At = A. Consequently,

the Spectral Theorem implies that this matrix is orthogonally diagonalizable. By definition, a real

3×3 matrix is diagonalizable if and only if there exists a basis for R3×1 consisting of eigenvectors for

A; naturally, this leads us to determine the eigenvectors for A. Before this, of course, we must find

the eigenvalues of A. By Proposition 2.4.6, these are simply the roots of the polynomial det(xI−A).

det(xI − A) =

∣∣∣∣∣∣
x− 1 −2 −3

−2 x− 1 −3

−3 −3 x

∣∣∣∣∣∣
= (x− 1)

∣∣∣∣x− 1 −3

−3 x

∣∣∣∣− (−2)

∣∣∣∣−2 −3

−3 x

∣∣∣∣+ (−3)

∣∣∣∣−2 x− 1

−3 −3

∣∣∣∣
= (x− 1)[(x− 1)x− (−3)(−3)] + 2[−2x− (−3)(−3)]− 3[(−2)(−3)− (x− 1)(−3)]

= (x− 1)(x2 − x− 9)− (4x+ 18)− (18 + 9x− 9)

= x3 − 2x2 − 8x+ 9− 4x− 18− 9− 9x

= x3 − 2x2 − 21x− 18

By inspection, we notice that −1 is a root of this cubic polynomial, hence by the Factor Theorem,

it follows that the linear polynomial x+1 divides x3− 2x2− 21x− 18. By polynomial long division,

we find that x3 − 2x2 − 21x − 18 = (x + 1)(x2 − 3x − 18) = (x + 1)(x − 6)(x + 3). Consequently,

the eigenvalues of A are −3, −1, and 6. We determine the eigenvectors corresponding to these

eigenvalues by solving the matrix equations AX = −3X, AX = −X, and AX = 6X. We have that

AX = −3X if and only if

1 2 3

2 1 3

3 3 0

xy
z

 =

−3x

−3y

−3z

 if and only if

x+ 2y + 3z

2x+ y + 3z

3x+ 3y

 =

−3x

−3y

−3z


if and only if 4x + 2y + 3z = 0 and 2x + 4y + 3z = 0 and 3x + 3y + 3z = 0. By subtracting

the second equation from the first equation, we find that 2x − 2y = 0 so that y = x; then, by

substituting y = x in the third equation and solving for z, we obtain that z = −2x. Consequently,

the eigenvectors of A corresponding to the eigenvalue −3 are all of the form (x, x,−2x)t for some



92 CHAPTER 2. CANONICAL FORMS FOR MATRICES

real number x. Choosing to set x = 1 gives us an eigenvector X−3 = (1, 1,−2)t for A corresponding

to the eigenvalue −3. Likewise, turning our attention to the eigenvalue −1, we have that

AX = −X if and only if

1 2 3

2 1 3

3 3 0

xy
z

 =

−x

−y

−z

 if and only if

x+ 2y + 3z

2x+ y + 3z

3x+ 3y

 =

−x

−y

−z


if and only if 2x + 2y + 3z = 0 and 3x + 3y + z = 0. By subtracting the first equation from the

second, it follows that x + y − 2z = 0; then, by subtracting twice this equation from the first, we

find that 7z = 0 so that z = 0 and y = −x. We conclude that the eigenvectors of A corresponding

to the eigenvalue −1 are of the form (x,−x, 0)t for some real number x. By taking x = 1, we obtain

an eigenvector X−1 = (1,−1, 0)t for A corresponding to the eigenvalue −1. Last, we have that

AX = 6X if and only if

1 2 3

2 1 3

3 3 0

xy
z

 =

6x6y
6z

 if and only if

x+ 2y + 3z

2x+ y + 3z

3x+ 3y

 =

6x6y
6z


if and only if −5x + 2y + 3z = 0 and 2x − 5y + 3z = 0 and 3x + 3y − 6z = 0. By dividing this

last equation by 3, we find that x + y − 2z = 0; now, we may subtract twice this equation from

the second equation to find that −7y + 7z = 0 or y = z. Likewise, we may subtract twice the third

equation from the first equation to obtain that −7x + 7z = 0 or x = z. Ultimately, it follows that

the eigenvectors of A corresponding to the eigenvalue 6 are (x, x, x)t for some real number x; thus, if

we substitute x = 1, we obtain an eigenvector X6 = (1, 1, 1)t for A corresponding to the eigenvalue

6. By Proposition 2.5.8, the eigenvectors X−3, X−1, and X6 are linearly independent, hence they

form a basis for R3×1 and the matrix representation for A with respect to this basis is diagonal by

the paragraph preceding Definition 2.5.7, so there is essentially nothing new here; however, by the

Spectral Theorem, moreover, it is guaranteed that A is orthogonally diagonalizable.

We will return to the above example to finish our verification of the Spectral Theorem for the

real symmetric 3 × 3 matrix at hand, but we must at this point digress to discuss the property of

orthogonality of vectors. Earlier in these notes, we defined the vector dot product X ·Y between

real n×1 column vectors X and Y by declaring that X ·Y = X tY. Observe that the dot product of

such vectors results in a real 1×1 vector whose only component is equal to the sum of the products

of each row of X and each row of Y. Explicitly, if X = (x1, . . . , xn)
t and Y = (y1, . . . , yn)

t, then

X · Y = X tY =
[
x1 · · · xn

] y1...
yn

 =
[
x1y1 + · · ·+ xnyn

]

is just found by doing the ordinary matrix multiplication of a 1× n matrix and and n× 1 matrix.

One important property of the dot product is that it allows us to determine an equivalent condition

for an n× n matrix A to be symmetric in terms of how it behaves with respect to the dot product.

Proposition 2.6.3. Given any n×n matrix A, we have that A is symmetric if and only if it holds

that (AX) · Y = X · (AY ) for all n× 1 column vectors X and Y.
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Proof. Observe that if A is a symmetric matrix, then by definition, we have that At = A. Conse-

quently, it follows that (AX) ·Y = (AX)tY = X tAtY = X tAY = X · (AY ) for all n×1 column vec-

tors X and Y by definition of the dot product. Conversely, we will assume that (AX) ·Y = X ·(AY )

for all n× 1 column vectors X and Y. By definition of the dot product and by hypothesis, we have

that X tAtY = (AX)tY = (AX) · Y = X · (AY ) = X tAY. Considering that this holds for all

n × 1 column vectors Y, we may substitute the standard basis vectors in place of Y to conclude

that X tAt = X tA for all n × 1 column vectors X. By performing the same substitution with the

standard basis vectors in place of X, we conclude that At = A.

We will say that two real n × 1 column vectors are orthogonal if and only if X · Y = O. We

have already tacitly encountered examples of orthogonal vectors such as the standard basis vectors

Ei and Ej for any distinct positive integers i and j. Let us return to the example for a moment.

Example 2.6.4. (Example 2.6.2, Cont’d) We found previously the following eigenvectors.

X−3 =

 1

1

−2

 X−1 =

 1

−1

0

 X6 =

11
1


By definition of the dot product, in order to find the lone component of the 1 × 1 matrix Xi ·Xj,

we simply take the product of each row of Xi by the row of Xj, and we add up all of these values

over all rows. Consequently, we have that X−3 · X−1 =
[
(1)(1) + (1)(−1) + (−2)(0)

]
=

[
0
]
and

X−3 · X6 =
[
(1)(1) + (1)(1) + (−2)(1)

]
=

[
0
]
and X−1 · X6 =

[
(1)(1) + (1)(−1) + (0)(1)

]
=

[
0
]
.

Consequently, the eigenvectors of the real symmetric 3× 3 matrix A are orthogonal.

Our next proposition demonstrates that this is a general property of symmetric matrices.

Proposition 2.6.5. Given any n × n symmetric matrix and any pair of eigenvectors X1 and X2

corresponding respectively to the distinct eigenvalues α1 and α2 of A, we have that X1 ·X2 = O. Put

another way, eigenvectors belonging to distinct eigenvalues of a symmetric matrix are orthogonal.

Proof. By assumption that α1 and α2 are distinct eigenvalues, it follows that α1 − α2 is nonzero.

Consequently, if we can establish that (α1−α2)(X1 ·X2) = O, then we must have that X1 ·X2 = O.

By Proposition 1.2.6, it follows that matrix multiplication is distributive, and by [Lan86, Exercise

6] on page 47, the transpose commutes with scalar multiplication, hence we have the following.

α1(X1 ·X2) = α1X
t
1X2 = (α1X)tX2 = (AX1)

tX2 = (AX1) ·X2

α2(X1 ·X2) = α2X
t
1X2 = X t

1(α2X2) = X t
1(AX2) = X1 · (AX2)

By hypothesis that A is symmetric, we may apply Proposition 2.6.3 to conclude that (AX1) ·X2 =

X1 · (AX2), from which it follows that α1(X1 ·X2) = α2(X1 ·X2) and (α1 − α2)(X1 ·X2) = O.

Consequently, if we can demonstrate that any real symmetric matrix A is diagonalizable, then

it will follow from Proposition 2.6.5 that A is orthogonally diagonalizable, by which we mean

that there exists a basis of Rn×1 consisting of eigenvectors for A that are pairwise orthogonal.

Equivalently, one can define the condition of orthogonal diagonalizability in terms of matrices. We

say that a real n × n matrix Q is orthogonal if it holds that QQt = I = QtQ. Put another way,
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a real n× n matrix Q is orthogonal if and only if it is invertible and its transpose Qt is its matrix

inverse. Consequently, we will say that a real n× n matrix A is orthogonally diagonalizable if and

only if there exists a real orthogonal n× n matrix Q such that QAQt is a diagonal matrix. By this

identification, we can prove one direction of the Spectral Theorem.

Proposition 2.6.6. Every real orthogonally diagonalizable matrix is symmetric.

Proof. By definition, if A is a real n×n matrix that is orthogonally diagonalizable, then there exists

a real orthogonal n×nmatrix Q such that QAQt is a diagonal matrix. Observe that the transpose of

a diagonal matrix is itself, hence we have that QAQt = (QAQt)t = (Qt)tAtQt = QAtQt. Considering

that Q and Qt are invertible matrices, we may “cancel” them on the left- and right-hand sides of

this identity (by multiplying by their matrix inverses) to conclude that A = At.

Only the implication of the Spectral Theorem remains to be seen. We will not prove this here,

but we will prove a necessary lemma that the eigenvalues of a real symmetric n×n matrix are always

real numbers. We should point out that this is an inextricable property of real symmetric matrices

that is an important fact in its own right and stands in sharp contrast to the general situation with

non-symmetric real matrices: the following 2× 2 matrix does not have a real eigenvalue![
0 −1

1 0

]
Explicitly, the characteristic polynomial of this matrix is x2 + 1, and we have that c is a root of

x2 + 1 if and only if c2 + 1 = 0 if and only if c2 = −1 if and only if c = ±
√
−1. Conventionally,

we write i =
√
−1, and we point out that this is not a real number because the square of every

real number is a non-negative real number; in fact, we say that i is an imaginary number. We

refer to the set C = {a + bi | a and b are real numbers and i =
√
−1} as the complex numbers.

Consequently, we may view i itself as a complex number. We distinguish the real number a of the

complex number a+ bi as the real part of a+ bi, and the real number b is the imaginary part of

a+ bi. Complex numbers admit a notion of addition that allow us to view C as the two-dimensional

real vector space C = span{1, i}. Explicitly, we define (a+ bi) + (c+ di) = (a+ b) + (c+ d)i as per

the usual addition of vectors with respect to a basis. Consequently, the zero vector of C is 0 + 0i.

We define multiplication of complex numbers by “foiling” a product of complex numbers as follows.

(a+ bi)(c+ di) = ac+ adi+ bci+ (bi)(di) = (ac− bd) + (ad+ bc)i

Even more, if a and b are nonzero real numbers, then a+bi and a−bi are nonzero complex numbers,

and we have that (a+bi)(a−bi) = a2+b2 is a nonzero real number. We refer to the complex number

a−bi as the complex conjugate of a+bi, and the real number
√
a2 + b2 = (a+bi)(a−bi) is called

the modulus of a+ bi. Often, authors throughout the literature will denote z = a+ bi; its complex

conjugate z̄ = a− bi; and its modulus |z| =
√
a2 + b2. Crucially, we have that |z|2 = a2 + b2 = zz̄,

and for any pair of complex numbers z1 and z2, it follows that z1z2 = z̄1z̄2.

Recall that a root of a polynomial αnx
n+ · · ·+α1x+α0 with complex coefficients α0, α1, . . . , αn

is a complex number z such that αnz
n+ · · ·+α1z+α0 = 0. Even though it is a classical theorem of

algebra, the following is typically proved using complex analysis. Consequently, we will not attempt

in this course to supply any justification ourselves; we will simply take it for granted.



2.6. THE SPECTRAL THEOREM 95

Theorem 2.6.7 (Fundamental Theorem of Algebra). Let n be a positive integer. Every polynomial

p(x) of degree n with complex coefficients has exactly n (not necessarily distinct) roots.

Consequently, the polynomial equation z3 = 1 has exactly three solutions over the complex

numbers. Certainly, one solution is simply z = 1; however, the other two solutions have nonzero

imaginary part. Explicitly, we may factor x3 − 1 = (x− 1)(x2 + x+ 1) such that x2 + x+ 1 has no

real roots because the discriminant b2 − 4ac of the Quadratic Formula is negative.

We are now ready to prove the following indispensable fact about real symmetric matrices.

Theorem 2.6.8. Every eigenvalue of a real symmetric matrix is a real number.

Proof. Converting the above statement into symbols, we need to prove that if A is a real symmetric

n× n matrix and α is an eigenvalue of A corresponding to an eigenvector X for A, then α is a real

number. Unfortunately, it is not clear a priori that the eigenvector X for A corresponding to α is

a real n× 1 column vector; however, we may assume that its entries are all complex numbers. Ex-

plicitly, we will assume for the moment that X = (z1, . . . , zn)
t for some complex numbers z1, . . . , zn.

Consider the column vector X̄ = (z̄1, . . . , z̄n)
t consisting of the complex conjugates of the compo-

nents of X. By definition of the dot product, it follows that X · X̄ = X tX̄ =
[
z1z̄1 + · · ·+ znz̄n

]
.

Each of the products ziz̄i is a non-negative real number, hence X · X̄ is a nonzero 1 × 1 matrix.

Complex multiplication is commutative, hence we have that ziz̄i = z̄izi for all integers 1 ≤ i ≤ n,

and the same argument used to compute the dot product as before shows that X̄ · X = X · X̄.

Considering that X is an eigenvector for A corresponding to the eigenvalue α, it holds that

(AX) · X̄ = (αX) · X̄ = (αX)tX̄ = αX tX̄ = α(X · X̄).

By assumption that A is a real matrix, complex conjugation does not affect its entries. Put another

way, if we denote by Ā the matrix obtained from A by taking the complex conjugate of each of

its entries, then we have that Ā = A. Observe that AX is by definition the n × 1 column vector

obtained from the n× 1 column vector AX by taking the complex conjugate of each of its entries.

Complex conjugates satisfies that z1z2 = z1z2 for any pair of complex numbers z1 and z2, hence we

find that AX̄ = ĀX̄ = AX = αX = ᾱX̄. On the level of the dot product, this gives the following.

X · (AX̄) = X · (ᾱX̄) = X t(ᾱX̄) = ᾱ(X tX̄) = ᾱ(X · X̄)

By Proposition 2.6.3, we conclude that α(X · X̄) = (AX) · X̄ = X · (AX̄) = ᾱ(X · X̄) by assumption

that A is a symmetric matrix. Consequently, we find that (α − ᾱ)(X · X̄) = O; then, using the

fact that X · X̄ is a nonzero matrix, we conclude that α − ᾱ = 0 so that α = ᾱ. Last, if we write

α = a+ bi, then we have shown that a+ bi = α = ᾱ = a− bi so that 2bi = 0 and b = 0.

Often, the implication of the Spectral Theorem is stated throughout the literature as follows.

Theorem 2.6.9 (Principal Axis Theorem). Every real symmetric matrix is orthogonally diagonal-

izable. Explicitly, if A is a real symmetric matrix, then there exists an orthogonal matrix Q such

that QAQt is the diagonal matrix whose diagonal entries are the eigenvalues of A.

Even though we will not complete the proof here, we remark that the argument is made by

induction on the number of rows and columns of the real symmetric matrix in question. One can

find a proof using the ingredients present in these notes in either [McK22] or [Smi17].
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2.7 Nilpotent Matrices and Cyclic Subspaces

We have seen previously that diagonal matrices are the simplest kinds of matrices (other than scalar

matrices), hence it has been our hope that every linear transformation from a finite-dimensional

vector space to itself could be represented by a diagonal matrix. Unfortunately, this is not possible

by Example 2.5.18: even a matrix as inconspicuous as the one obtained from the zero matrix by

replacing some non-diagonal component by one cannot be converted to a diagonal matrix; however,

this matrix is itself triangular, hence it is natural to study triangular matrices. Explicitly, an

upper-triangular matrix is a square matrix whose components below the main diagonal are zero.

Conversely, we say that a matrix is lower-triangular if it is the transpose of an upper-triangular

matrix. Considering that the determinant of a matrix is equal to the determinant of its transpose

and that the characteristic polynomial of a matrix is therefore equal to the characteristic matrix of

its transpose, we may strictly fix our attention on the upper-triangular matrices.

Our first order of business is to establish that the determinant of an upper-triangular matrix is

the product of its diagonal components; this affords us a simple way to compute the characteristic

polynomial of an upper-triangular matrix because its characteristic matrix is also upper-triangular.

Proposition 2.7.1. The determinant of a triangular matrix is the product of its diagonal entries.

Proof. Considering that a lower-triangular matrix is the transpose of an upper-triangular matrix

and the determinant of a matrix is equal to the determinant of its transpose by Proposition 2.1.12,

we may prove the claim for upper-triangular matrices. We proceed by induction on the size n of an

n× n upper-triangular matrix A. Every 2× 2 diagonal matrix is of the following form.

A =

[
a11 a12
0 a22

]
Consequently, we have that det(A) = a11a22, as desired. We will assume by induction that the

claim holds for (n− 1)× (n− 1) upper-triangular matrices. Consider the following n× n matrix.

A =


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann


Expanding the determinant along the first column, we obtain the following identity.

det(A) = a11

∣∣∣∣∣∣∣∣∣
a22 a23 · · · a2n
0 a33 · · · a3n
...

...
. . .

...

0 0 · · · ann

∣∣∣∣∣∣∣∣∣
Considering that the determinant on the right-hand side is taken from an (n−1)×(n−1) matrix, it

follows by our inductive hypothesis that det(A) = a11a22 · · · ann is the product of the diagonal.
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Corollary 2.7.2. Given any triangular n× n matrix A whose diagonal components are a1, . . . , an,

the characteristic polynomial of A is given by χA(x) = (x− a1) · · · (x− an).

Proof. Considering that xI is a diagonal matrix, it follows that xI−A is a triangular matrix because

the difference does not affect any components of A other than those lying on the diagonal of A.

Observe that the diagonal components of xI−A are simply the linear polynomials x−a1, . . . , x−an,

hence by Proposition 2.7.1, we conclude that χA(x) = det(xI − A) = (x− a1) · · · (x− an).

We return our attention to the non-diagonalizable matrix A of Example 2.5.18. Observe that

the characteristic polynomial of A is χA(x) = x3; however, its minimal polynomial is µA(x) = x2.

Consequently, the matrix A admits an eigenvalue 0 of algebraic multiplicity three because the

power of the linear factor x− 0 in the characteristic polynomial of A is three. On the other hand,

the geometric multiplicity of the eigenvalue 0 is two, i.e., the dimension of the eigenspace W0

of V corresponding to the eigenvalue 0 is two. Both of these observations lead us to study square

matrices whose powers eventually all result in the zero matrix. We will say that an n× n matrix A

is nilpotent if there exists an integer k ≥ 1 such that Ak = O. Likewise, we will say that a linear

transformation T : V → V from a vector space V to itself is nilpotent if there exists an integer

k ≥ 1 such that the k-fold composite transformation T k : V → V is the zero transformation.

Proposition 2.7.3. Given any n× n matrix A, the following properties are equivalent.

1.) We have that Ak = O and A,A2, . . . , Ak−1 are nonzero.

2.) The minimal polynomial of A is µA(x) = xk.

3.) The characteristic polynomial of A is χA(x) = xn.

Proof. By Proposition 2.3.9, if Ak = O for some positive integer k, then the minimal polynomial

µA(x) of A divides xk. Consequently, we must have that µA(x) is a power of x because the only poly-

nomials that divide xk are x, x2, . . . , xk. Even more, by assumption that the matrices A,A2, . . . , Ak−1

are nonzero, it follows that µA(x) = xk by assumption that k is the least positive integer for which

Ak = O. By Proposition 2.3.14, we conclude that if µA(x) = xk for some integer 1 ≤ k ≤ n, then

χA(x) = xn because µA(x) and χA(x) have the same irreducible factors. Last, if the characteristic

polynomial of A is xn, then A is nilpotent by the Cayley-Hamilton Theorem.

Example 2.7.4. Consider the following real 2× 2 matrix A.

A =

[
0 1

0 0

]
Observe that A2 = O, hence A is a nonzero nilpotent matrix.

Example 2.7.5. Consider the following real 3× 3 matrix A.

A =

0 1 0

0 0 1

0 0 0


Observe that A and A2 are nonzero and A3 = O, hence A is a nonzero nilpotent matrix.
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We refer to the positive integer k defined in the first and second parts of Proposition 2.7.3 as

the index of nilpotency (or degree of nilpotency) of the nilpotent n× n matrix A. Crucially,

observe that the only eigenvalue of a nilpotent matrix is zero. By Definition 2.5.7, a real nilpotent

n×n matrix is diagonalizable if and only if there exists a basis of Rn×1 consisting of eigenvectors for

0 if and only if we have that AEi = O for all standard basis vectors E1, . . . , En of Rn×1 if and only if

A is the n× n zero matrix. Consequently, by this observation, we obtain the following proposition.

Proposition 2.7.6. The only diagonalizable nilpotent n× n matrix is the n× n zero matrix.

Even though no nonzero nilpotent matrix is diagonalizable, every nilpotent matrix admits an

upper-triangular matrix representation for which the diagonal components are all zeros.

Theorem 2.7.7. Every nilpotent n × n matrix admits an upper-triangular matrix representation.

Even more, the diagonal components of such a matrix representation are all zeros.

We devote the remainder of this section to the proof of the aforementioned theorem. Consider

any nonzero vector v of any nonzero vector space V. Given any linear transformation T : V → V

from V to itself, we refer to the collection of vectors of V of the form αnT
n(v) + · · ·+α1T (v) +α0v

for some scalars αn . . . , α1, α0 as the T -cyclic subspace of V generated by the vector v. Explicitly,

the T -cyclic subspace C(T, v) of V generated by v is the span of all vectors of the form T k(v) for

some integer k ≥ 0. Consequently, it is by definition a vector subspace of V.

Example 2.7.8. Observe that the T -cyclic subspace of V generated by the zero vector of V is

simply the zero subspace of V : indeed, we have that T k(O) = O for all integers k ≥ 0.

Example 2.7.9. Given any eigenvector v of T corresponding to an eigenvalue α of T, we have

that T (v) = αv. Consequently, for any integer k ≥ 1, we have that T k(v) = αkv, and the T -cyclic

subspace of V generated by the eigenvector v is nothing more than the span of v.

Example 2.7.10. Let us compute the T -cyclic subspace of R1×3 generated by X = (1, 1, 1) with

respect to the linear transformation T : R1×3 → R1×3 defined by T (x, y, z) = (x,−y, z).Observe that

T (X) = T (1, 1, 1) = (1,−1, 1) and T 2(X) = T (T (X)) = T (1,−1, 1) = (1, 1, 1) = X. Consequently,

the T -cyclic subspace of R1×3 generated by X is given by C(T,X) = span{(1, 1, 1), (1,−1, 1)}.
Example 2.7.11. Consider the T -cyclic subspace of R3×1 generated by the vector X t = (1, 1, 1)t

with respect to the linear transformation T : R3×1 → R3×1 with the following matrix representation.

A =

 1 0 1

−1 1 0

0 1 0


By definition, the image T (X t) is given by the matrix product AX t as follows.

AX t =

 1 0 1

−1 1 0

0 1 0

11
1

 =

20
1



A2X t =

 1 0 1

−1 1 0

0 1 0

20
1

 =

 3

−2

0


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We claim that the column vectors X t, AX t, and A2X t are linearly independent, hence they form

a basis for the T -cyclic subspace of R3×1 generated by X t. By Algorithm 1.7.9, it suffices to check

that the real 3× 3 matrix with columns X t, AX t, and A2X t has three pivots.1 2 3

1 0 −2

1 1 0

 (1.)∼

1 2 3

0 −2 −5

0 −1 −3

 (2.)∼

1 2 3

0 −2 −5

0 0 −1
2


(1.) We employ the elementary row operations R2 −R1 7→ R2 and R3 −R1 7→ R3.

(2.) We employ the elementary row operation R3 − 1
2
R2 7→ R3.

Consequently, the vectors X t, AX t, and A2X t are linearly independent, hence the T -cyclic subspace

of R3×1 generated by X t is given by C(T,X t) = span{(1, 1, 1)t, (2, 0, 1)t, (3,−2, 0)t}.

One of the foremost advantages of working with the T -cyclic subspace C(T, v) of a vector space

V generated by a nonzero vector v is that the matrix representation of T as a linear transformation

from C(T, v) to itself is especially simple to describe, as our next proposition guarantees.

Proposition 2.7.12. Consider any linear transformation T : V → V from any nonzero finite-

dimensional vector space V to itself.

1.) There exists a nonzero vector v ∈ V and a positive integer n such that the T -cyclic subspace

C(T, v) of V generated by v is spanned by the vectors v, T (v), T 2(v), . . . , T n−1(v).

2.) Even more, the positive integer n from the previous part can be chosen such that the vectors

v, T (v), T 2(v), . . . , T n−1(v) are linearly independent, hence they form a basis for C(T, v).

3.) We may view T as a linear transformation from C(T, v) to itself such that the matrix repre-

sentation of T with respect to the ordered basis v, T (v), T 2(v), . . . , T n−1(v) is as follows.
0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...

0 0 · · · 1 −αn−1


We refer to this as the companion matrix of xn + αn−1x

n−1 + · · ·+ α2x
2 + α1x+ α0.

Proof. (1.) By definition, for any nonzero vector v ∈ V, the T -cyclic subspace C(T, v) of V generated

by v is spanned by the vectors T k(v) for all integers k ≥ 0; however, by assumption that V has finite

dimension, there exists an integer n ≥ 1 such that v, T (v), T 2(v), . . . , T n(v) are linearly dependent.

Consequently, there exist scalars α0, α1, α2, . . . , αn−1 (not all of which are zero) such that

T n(v) + αn−1T
n−1(v) + · · ·+ α2T

2(v) + α1T (v) + α0v = O.

By rearranging this expression of linear dependence, it follows that

T n(v) = −αn−1T
n−1(v)− · · · − α2T

2(v)− α1T (v)− α0v.
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Given any integer k ≥ n, observe that T k(v) = T k−n(T n(v)) is obtained by applying the linear

transformation T to the above expression k − n times. By the linearity of T, every vector T k(v)

with k ≥ n can be written as a linear combination of v, T (v), T 2(v), . . . , T n−1(v), as desired.

(2.) We must prove next that the positive integer n from the previous part can be chosen

such that the vectors v, T (v), T 2(v), . . . , T n−1(v) are linearly independent. Considering that v is a

nonzero vector of V, it follows that v is linearly independent. Consequently, it suffices to check that

v and T (v) are linearly independent. Observe that if T (v) = O, then T k(v) = O for all integers

k ≥ 1. Consequently, C(T, v) is spanned by v, hence v forms a basis for C(T, v). Otherwise, we may

assume that T (v) is nonzero. We note in this case that if v and T (v) are linearly dependent, then

there exists a nonzero scalar α such that T (v) + αv = O or T (v) = −αv. Consequently, for each

integer k ≥ 1, we have that T k(v) = (−1)kαv so that once again, C(T, v) is spanned by v. Given that

neither T (v) = O nor T (v) = −αv, it follows that v and T (v) are linearly independent. Continuing

in this manner, we may find the smallest positive integer n for which v, T (v), T 2(v), . . . , T n−1(v) are

linearly independent; by the previous part, these vectors form a basis for C(T, v).

(3.) By the first part of the proof, we note that T can be regarded as a linear transformation

from C(T, v) to itself. Considering that v, T (v), T 2(v), . . . , T n−1(v) form an ordered basis of this

vector space, we may consider the matrix representation of T with respect to this ordered basis.

T (v) = 0 · v + 1 · T (v) + 0 · T 2(v) + · · ·+ 0 · T n−1(v)

T (T (v)) = T 2(v) = 0 · v + 0 · T (v) + 1 · T 2(v) + · · ·+ 0 · T n−1(v)

...

T (T n−2(v)) = T n−1(v) = 0 · v + 0 · T (v) + 0 · T 2(v) + · · ·+ 1 · T n−1(v)

T (T n−1(v)) = T n(v) = −α0v − α1T (v)− α2T
2(v)− · · · − αn−1T

n−1(v)

Certainly, this gives rise to the desired matrix representation of T.

Even more, the characteristic polynomial and minimal polynomial of the companion matrix of

the polynomial p(x) = xn + αn−1x
n−1 + · · ·+ α2x

2 + α1x+ α0 are both p(x) itself!

Proposition 2.7.13. Given any scalars α0, α1, α2, . . . , αn−1, consider the following n× n matrix.

C =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...

0 0 · · · 1 −αn−1


We have that µC(x) = xn + αn−1x

n−1 + · · ·+ α2x
2 + α1x+ α0. Put another way, the characteristic

polynomial and the minimal polynomial of the companion matrix of p(x) are both p(x).

We reserve the proof of this fact for later when we discuss companion matrices; however, we note

that the result is useful because it allows us to cook up matrices with any desired characteristic and

minimal polynomials. Back in our present discussion of nilpotent matrices, we are able to apply

the previous two propositions to obtain the desired matrix representation of a nilpotent matrix.
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Proposition 2.7.14. Given any nilpotent linear transformation T : V → V from any nonzero

finite-dimensional vector space V to itself, there exists a nonzero vector v ∈ V such that the T -

cyclic subspace C(T, v) of V generated by v admits an ordered basis v, T (v), T 2(v), . . . , T n−1(v) with

respect to which the matrix transformation of T : C(T, v) → C(T, v) has the following form.
0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


Explicitly, this matrix is lower-triangular with diagonal components of zero.

Proof. Considering that T is nilpotent, by Proposition 2.7.3, the minimal polynomial of T is given by

µT (x) = xk for some positive integer k not exceeding the dimension of V. By the proof of Proposition

2.7.12, we may consider T as a linear transformation from C(T, v) to itself; the minimal polynomial

µ(x) of the restriction of T to the T -cyclic subspace C(T, v) of V generated by v divides any

polynomial that annihilates T by Proposition 2.3.9, from which it follows that µ(x) = xℓ for some

integer 1 ≤ ℓ ≤ k. Consequently, we have that T ℓ = O so that T (T ℓ−1(v)) = T ℓ(v) = O. On the

other hand, the vectors v, T (v), T 2(v), . . . , T ℓ−1(v) cannot be linearly dependent because this would

imply that some polynomial αℓ−1x
ℓ−1 + · · ·+ α2x

2 + α1x+ α0 annihilates T (v) — a contradiction.

We conclude that v, T (v), T 2(v), . . . , T ℓ−1(v) form an ordered basis for C(T, v), hence the matrix

representation of T with respect to this ordered basis has the desired form by Proposition 2.7.12.

2.8 The Smith Normal Form

We turn our attention next to an indispensable tool in the theory of canonical forms for matrices.

Explicitly, we will construct a canonical form for the characteristic matrix xI − A of a real n × n

matrix that will allow us to determine the minimal polynomial and characteristic polynomial of A.

Theorem 2.8.1 (Smith Normal Form). Given any real n× n matrix A and any indeterminate x,

there exist invertible n× n matrices P and Q and real polynomials p1(x), p2(x), . . . , pℓ(x) such that

P (xI − A)Q =



1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 0 · · · 0

0 0 · · · 0 p1(x) 0 · · · 0

0 0 · · · 0 0 p2(x) · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · pℓ(x)


and the polynomials pi(x) are unique (up to sign) and satisfy that p1(x) | p2(x) | · · · | pℓ(x). Even
more, the non-constant polynomials are called invariant factors; the minimal polynomial of A is

the largest invariant factor pℓ(x); and the characteristic polynomial of A is p1(x)p2(x) · · · pℓ(x).
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Computing the Smith Normal Form for the characteristic matrix xI −A of a real n× n matrix

A amounts to carrying out some elementary row operations and elementary column operations on

xI − A to reduce the given matrix to the desired form. Explicitly, we will find that the invertible

n× n matrix P is obtained from the n× n identity matrix by performing the specified elementary

row operations on xI−A; likewise, the invertible n×n matrix Q is obtained from the n×n identity

matrix by performing the specified elementary column operations on xI − A. We note that there

are three elementary row (or column) operations that are valid in this scenario.

1.) We may multiply any row (or column) of the matrix by a nonzero real number a.

2.) We may add any polynomial multiple of a row (or column) to another row (or column).

3.) We may interchange any pair of rows (or columns) of the matrix.

We continue using the shorthand Ri 7→ aRi to denote the operation of multiplying the ith row of

the matrix by a; we will use the shorthand Rj + p(x)Ri 7→ Rj to denote the operation of adding a

polynomial multiple p(x) of the ith row of the matrix to the jth row of the matrix (for any distinct

indices i and j); and we will use the shorthand Ri ↔ Rj to denote the operation of interchanging

the ith and jth rows of the matrix. Each of these elementary row operations can also be performed

with the ith and jth columns Ci and Cj of the matrix for any pair of distinct indices i and j.

Example 2.8.2. Let us compute the Smith Normal Form for xI −A of the following 2× 2 matrix.

A =

[
1 0

1 −1

]
We will keep track of the elementary row operations by performing each such operation on the 2×2

identity matrix; likewise, we will keep track of the column operations by manipulating the columns

of the 2× 2 identity matrix according to the column operations on xI − A.

xI − A =

[
x− 1 0

−1 x+ 1

]

1.) C2 + (x+ 1)C1 7→ C2 xI − A ∼
[
x− 1 (x− 1)(x+ 1)

−1 0

]
Q ∼

[
1 x+ 1

0 1

]

2.) R1 ↔ R2 xI − A ∼
[

−1 0

x− 1 (x− 1)(x+ 1)

]
P ∼

[
0 1

1 0

]

3.) R2 + (x− 1)R1 7→ R2 xI − A ∼
[
−1 0

0 (x− 1)(x+ 1)

]
P ∼

[
0 1

1 x− 1

]

4.) −R1 7→ R1 xI − A ∼
[
1 0

0 (x− 1)(x+ 1)

]
P ∼

[
0 −1

1 x− 1

]
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Consequently, the Smith Normal Form for xI−A and the invertible matrices P and Q are as follows.

SNF(xI − A) = P (xI − A)Q =

[
0 −1

1 x− 1

] [
x− 1 0

−1 x+ 1

] [
1 x+ 1

0 1

]
=

[
1 0

0 (x− 1)(x+ 1)

]
Even more, the only invariant factor of A is (x−1)(x+1), hence we have that µA(x) = (x−1)(x+1)

and χA(x) = (x− 1)(x+ 1). Last, the elementary divisors of A are x− 1 and x+ 1.

Example 2.8.3. Let us compute the Smith Normal Form for xI −A of the following 2× 2 matrix.

A =

[
0 1

0 0

]
We will keep track of the elementary row operations by performing each such operation on the 2×2

identity matrix; likewise, we will keep track of the column operations by manipulating the columns

of the 2× 2 identity matrix according to the column operations on xI − A.

xI − A =

[
x −1

0 x

]

1.) C1 ↔ C2 xI − A ∼
[
−1 x

x 0

]
Q ∼

[
0 1

1 0

]

2.) R2 + xR1 7→ R2 xI − A ∼
[
−1 x

0 x2

]
P ∼

[
1 0

x 1

]

3.) C2 + xC1 7→ C2 xI − A ∼
[
−1 0

0 x2

]
Q ∼

[
0 1

1 x

]

4.) −R1 7→ R1 xI − A ∼
[
1 0

0 x2

]
P ∼

[
−1 0

x 1

]
Consequently, the Smith Normal Form for xI−A and the invertible matrices P and Q are as follows.

SNF(xI − A) = P (xI − A)Q =

[
−1 0

x 1

] [
x −1

0 x

] [
0 1

1 x

]
=

[
1 0

0 x2

]
Even more, the only invariant factor of A is x2, hence the minimal polynomial and the characteristic

polynomial of A are µA(x) = x2 and χA(x) = x2. Last, the only elementary divisor of A is x2.

Going forward into the case of 3×3 matrices, out of want for simplicity, we will not concern our-

selves with keeping track of the matrices P and Q; however, we note that (somewhat miraculously)

in order to determine the invertible matrix P that converts A to its Rational Canonical Form

or Jordan Canonical Form, it suffices to keep track only of the elementary row operations.
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Example 2.8.4. Let us compute the Smith Normal Form for xI −A of the following 3× 3 matrix.

A =

1 1 1

2 2 2

3 3 3


We will keep track of the elementary row operations and often abbreviate column operations.

xI − A =

x− 1 −1 −1

−2 x− 2 −2

−3 −3 x− 3



1.) C1 ↔ C2 xI − A ∼

 −1 x− 1 −1

x− 2 −2 −2

−3 −3 x− 3



2.) R2 + (x− 2)R1 7→ R2 xI − A ∼

−1 x− 1 −1

0 (x− 1)(x− 2)− 2 −(x− 2)− 2

−3 −3 x− 3



3.) R3 − 3R1 7→ R3 xI − A ∼

−1 x− 1 −1

0 (x− 1)(x− 2)− 2 −(x− 2)− 2

0 −3(x− 1)− 3 x



Perform column operations

and simplify the result.
xI − A ∼

1 0 0

0 x(x− 3) −x

0 −3x x



4.) C2 + (x− 3)C3 7→ C2 xI − A ∼

1 0 0

0 0 −x

0 −3x+ x(x− 3) x



5.) R3 +R2 7→ R3 xI − A ∼

1 0 0

0 0 −x

0 x(x− 6) 0



6.)
C2 ↔ C3

−C2 7→ C2
xI − A ∼

1 0 0

0 x 0

0 0 x(x− 6)


We note that this last matrix is by definition the Smith Normal Form for xI−A. Consequently, the
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invariant factors of A are x and x(x−6); the elementary divisors of A are x, x, and x−6; the minimal

polynomial of A is µA(x) = x(x− 6); and the characteristic polynomial of A is χA(x) = x2(x− 6).

Example 2.8.5. Let us compute the Smith Normal Form for xI −A of the following 3× 3 matrix.

A =

1 0 2

0 1 0

0 0 1


We will keep track of the elementary row operations and often abbreviate column operations;

however, it is possible here to get away almost entirely with using column operations.

xI − A =

x− 1 0 −2

0 x− 1 0

0 0 x− 1



1.) R3 +
1

2
(x− 1)R1 7→ R3 xI − A ∼

 x− 1 0 −2

0 x− 1 0
1
2
(x− 1)2 0 0



2.) C1 ↔ C3 xI − A ∼

−2 0 x− 1

0 x− 1 0

0 0 1
2
(x− 1)2



3.) − 1

2
C1 7→ C1 xI − A ∼

1 0 x− 1

0 x− 1 0

0 0 1
2
(x− 1)2



4.) C3 − (x− 1)C3 7→ C3 xI − A ∼

1 0 0

0 x− 1 0

0 0 1
2
(x− 1)2



5.) 2C3 7→ C3 xI − A ∼

1 0 0

0 x− 1 0

0 0 (x− 1)2


We note that this last matrix is the Smith Normal Form for xI − A. Consequently, the invariant

factors of A are x− 1 and (x− 1)2; the elementary divisors of A are x− 1 and (x− 1)2; the minimal

polynomial of A is µA(x) = (x− 1)2; and the characteristic polynomial of A is χA(x) = (x− 1)3.

Example 2.8.6. Observe that the characteristic matrix of the n × n zero matrix O is simply the

n×nmatrix xI. Consequently, the Smith Normal Form for the characteristic matrix of the n×n zero

matrix is the diagonal matrix consisting of n copies of x along the main diagonal. Particularly, the

invariant factors and the elementary divisors of O are x, x, . . . , x (n times); the minimal polynomial

of O is µO(x) = x; and the characteristic polynomial of O is χO(x) = xn.
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Example 2.8.7. Observe that the characteristic matrix of the n×n identity matrix I is the matrix

(x− 1)I. Consequently, the Smith Normal Form for the characteristic matrix of the n× n identity

matrix is the diagonal matrix consisting of n copies of x− 1 along the main diagonal. Particularly,

the invariant factors and the elementary divisors of I are x−1, x−1, . . . , x−1 (n times); the minimal

polynomial of I is µI(x) = x− 1; and the characteristic polynomial of I is χI(x) = (x− 1)n.

We will find that the Rational Canonical Form for A is built out of the invariant factors of

A; similarly, the Jordan Canonical Form for A is built out of the elementary divisors of A. By

definition, the elementary divisors of A are the powers of the irreducible polynomial factors of the

invariant factors of A. We have tacitly used this fact already, but let us do some more examples.

Example 2.8.8. Given that the invariant factors of a matrix A are x− 1 and (x− 1)(x− 2), the

elementary divisors of A must be x− 1, x− 1, and x− 2; this must be a 3× 3 matrix with minimal

polynomial µA(x) = (x− 1)(x− 2) and characteristic polynomial χA(x) = (x− 1)2(x− 2).

Example 2.8.9. Given that the invariant factors of a matrix A are x, x2, and x3(x + 1)2, the

elementary divisors of A must be x, x2, x3, and (x+1)2; this must be an 8×8 matrix with minimal

polynomial µA(x) = x3(x+ 1)2 and characteristic polynomial χA(x) = x6(x+ 1)2.

Example 2.8.10. Observe that there cannot be a matrix with invariant factors x − 1 and x + 1

because neither of these linear polynomials divides the other. Explicitly, they have distinct roots.

We provide an algorithm for determining the elementary divisors from the invariant factors.

Algorithm 2.8.11 (Converting Invariant Factors to Elementary Divisors). Let A be a real n× n

matrix whose invariant factors are known. Use the following to find the elementary divisors of A.

1.) Given the invariant factors pi(x) with p1(x) | p2(x) | · · · | pℓ(x), express each invariant factor

pi(x) as a product of distinct prime powers of irreducible polynomials.

2.) Construct an upper-triangular array whose ith column consists of the distinct prime powers

of irreducible polynomials qi1(x)
ei1 , . . . , qik(x)

eik such that pi(x) = qi1(x)
ei1 · · · qik(x)eik .

3.) We obtain the elementary divisors of A as the components of the upper-triangular array.

Example 2.8.12. By the previous algorithm, if A admits an invariant factor x(x − 1)2(x2 + 1)3,

then the elementary divisors of A corresponding to this invariant factor are x, (x−1)2, and (x2+1)3.

Conversely, it is possible to ask for the invariant factors from the elementary divisors. We

provide an algorithm for this task; however, we note that it is slightly more delicate than the last.

Algorithm 2.8.13 (Converting Elementary Divisors to Invariant Factors). Let A be a real n× n

matrix whose elementary divisors are known. Use the following to find the invariant factors of A.

1.) Find the irreducible polynomial p(x) that appears the most times among the elementary

divisors of A. Choose one arbitrarily if more than one polynomial fits this criterion.

2.) Create an array whose first row consists of all powers of p(x) that appear as elementary

divisors of A, listing these powers in non-decreasing order from left to right.

3.) Repeat the second step in the second row with the irreducible polynomial q(x) that appears

the second most times among the elementary divisors of A.
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4.) Continue this process until all irreducible polynomials appearing as elementary divisors of A

have been written in a row. One should end with an upper-triangular array.

5.) By multiplying the elements of each consecutive column, we obtain the invariant factors of A.

Example 2.8.14. Given that the elementary divisors of a matrix A are x, x, x2, x3, x− 1, x2 + 1,

and x2 + 1, the previous algorithm leads us to the following upper-triangular array.

x x x2 x3

x2 + 1 x2 + 1

x− 1

Consequently, the invariant factors of A are the products of the columns of this array, i.e., they

are x, x, x2(x2 + 1), and x3(x− 1)(x2 + 1). We conclude that A is a 12× 12 matrix with minimal

polynomial µA(x) = x3(x− 1)(x2 + 1) and characteristic polynomial χA(x) = x7(x− 1)(x2 + 1)2.

Example 2.8.15. Given that the elementary divisors of a matrix A are x2, x2, x2 + x + 1, and

x2 + x+ 1, the previous algorithm leads us to the following upper-triangular array.

x2 x2

x2 + x+ 1 x2 + x+ 1

Consequently, the invariant factors of A are the products of the columns of this array, i.e., they are

x2(x2 + x+1) and x2(x2 + x+1). We conclude that A is an 8× 8 matrix with minimal polynomial

µA(x) = x2(x2 + x+ 1) and characteristic polynomial χA(x) = x4(x2 + x+ 1)2.

Example 2.8.16. Observe that there cannot be a 3× 3 matrix with elementary divisors x2 and x2

because this would force the characteristic polynomial to be x4, and this is impossible.

Example 2.8.17. Likewise, there cannot be any 3× 3 matrices with elementary divisors x and x

because this would force the characteristic polynomial to be x2, and this is impossible.

2.9 The Rational Canonical Form

Last section, we defined the Smith Normal Form of the characteristic matrix of a real n×n matrix.

Essentially, the Smith Normal Form provides a generalization of the reduced row echelon form of a

matrix with entries that do not lie in a field. Explicitly, polynomials do not admit multiplicative

inverses, so a matrix whose entries consist of polynomials might not admit a typical reduced row

echelon form consisting of zeros and ones; however, the Smith Normal Form guarantees that every

such matrix can be placed in a unique diagonal form consisting of ones and polynomials along the

diagonal in such a manner that each of the non-constant polynomials divides the next. Even more,

the Smith Normal Form provides the invariant factors and elementary divisors of a real n×n matrix.

We will see throughout this section and the next that this information leads to canonical forms that

are (in a strict sense) “simplest” and from which the properties of a matrix can be easily deduced.
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Given any monic polynomial p(x) = xn+αn−1x
n−1+ · · ·+α2x

2+α1x+α0 of degree n, we define

the companion matrix of the polynomial p(x) as the following n× n matrix.

Cp(x) =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...

0 0 · · · 1 −αn−1


Example 2.9.1. Observe that the companion matrix of any linear polynomial x + c is

[
−c

]
.

Explicitly, the companion matrix of x is
[
0
]
, and the companion matrix of x− 1 is

[
1
]
.

Example 2.9.2. Observe that the companion matrix of any quadratic polynomial x2 + ax+ b is[
0 −b

1 −a

]
.

Explicitly, the companion matrix of x2 + 1 is given as follows.[
0 −1

1 0

]
Likewise, the companion matrix of x2 + x+ 1 is the following.[

0 −1

1 −1

]
Crucially, the characteristic polynomial and minimal polynomial of the companion matrix of a

monic polynomial p(x) = xn + αn−1x
n−1 + · · ·+ α2x

2 + α1x+ α0 are both simply p(x).

Proposition 2.9.3. Consider the monic polynomial p(x) = xn +αn−1x
n−1 + · · ·+α2x

2 +α1x+α0

of positive degree n and the companion matrix Cp(x) of the polynomial p(x).

Cp(x) =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...

0 0 · · · 1 −αn−1


Both the characteristic polynomial and the minimal polynomial of Cp(x) are equal to p(x).

Proof. We will prove that the characteristic polynomial of Cp(x) is equal to p(x). We proceed by

induction on the degree n of p(x). Certainly, if n = 1, then the companion matrix of p(x) = x+ α0

is annihilated by p(x) because it holds that Cp(x) =
[
−α0

]
so that p(Cp(x)) = Cp(x) + α0I = O. We

conclude in this case that p(x) is the minimal polynomial of Cp(x) by Proposition 2.3.9, hence it is
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the characteristic polynomial by Proposition 2.3.14. We will assume by induction that the claim

holds for all monic polynomials of degree n− 1. Consider the characteristic matrix xI − Cp(x).

xI − Cp(x) =


x 0 · · · 0 α0

−1 x · · · 0 α1

0 −1
. . . 0 α2

...
...

. . .
...

...

0 0 · · · −1 x+ αn−1


By definition, the characteristic polynomial of Cp(x) is det(xI −Cp(x)). Expanding the determinant

along the first row yields det(xI − Cp(x)) = x det(xI − Cq(x)) + (−1)n+1α0 det(A) for the matrices

xI − Cq(x) =


x 0 · · · 0 α1

−1 x · · · 0 α2

0 −1
. . . 0 α3

...
...

. . .
...

...

0 0 · · · −1 x+ αn−1

 and A =


−1 x 0 · · · 0

0 −1 x · · · 0

0 0 −1
. . . 0

...
...

...
. . .

...

0 0 0 · · · −1


obtained as (n−1)× (n−1) submatrices of xI−Cp(x) by deleting the first row and first column and

the first row and nth column of xI−Cp(x), respectively. Observe that Cq(x) is the companion matrix

of the monic polynomial q(x) = xn−1 + αn−1x
n−2 + · · ·+ α3x

2 + α2x+ α1, hence by induction, the

characteristic polynomial and the minimal polynomial of Cq(x) are both q(x). Particularly, it follows

that x det(xI−Cq(x)) = xq(x) = xn+αn−1x
n−1+ · · ·+α3x

3+α2x
2+α1x = p(x)−α0. On the other

hand, we note that A is an upper-triangular matrix with n−1 copies of −1 along the diagonal, hence

we conclude by Proposition 2.7.1 that det(A) = (−1)n−1 and (−1)n+1α0 det(A) = α0. Combined,

these two calculations reveal that det(xI − Cp(x)) = p(x)− α0 + α0 = p(x), as desired.

Even though it is a bit contrived, we will prove that p(x) is the minimal polynomial of Cp(x) by

demonstrating that no monic polynomial of strictly lesser degree annihilates Cp(x). Observe that for

the n×1 standard basis vector E1 consisting of one in the first row and zeros elsewhere, we have that

Cp(x)E1 = E2 so that C2
p(x)E1 = Cp(x)E2 = E3 and Ck

p(x)E1 = Ek+1 for all integers 1 ≤ k ≤ n − 1.

Consequently, for any monic polynomial q(x) = xn−1 + βn−2x
n−2 + · · · + β2x

2 + β1x + β0, we have

that q(Cp(x))E1 = En+βn−2En−1+ · · ·+β2E3+β1E2+β0E1. We conclude that q(Cp(x)) is nonzero,

hence there cannot be a monic polynomial of degree less than n that annihilates Cp(x).

Given any (real) matrices A1, . . . , Ak such that Ai is an ni×ni matrix for each integer 1 ≤ i ≤ k,

the direct sum of A1, . . . , Ak is the (real) (n1 + · · ·+ nk)× (n1 + · · ·+ nk) matrix

A1 ⊕ · · · ⊕ Ak =

A1 0 0

0
. . . 0

0 0 Ak


constructed by arranging the matrices A1, . . . , Ak along the main diagonal and completing the

matrix with zeros elsewhere. We refer to a square matrix of this form as a block diagonal matrix.
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Example 2.9.4. Every diagonal matrix can be realized as a block diagonal matrix whose compo-

nents along the main diagonal are simply 1× 1 matrices. Explicitly, we have the following.
a11 0 · · · 0

0 a22 · · · 0

0 0
. . . 0

0 0 · · · ann

 =
[
a11

]
⊕
[
a22

]
⊕ · · · ⊕

[
ann

]

Example 2.9.5. By definition, the direct sum of a 1× 1 and a 2× 2 matrix matrix is a 3× 3 block

diagonal matrix. Explicitly, the direct sum is a matrix of the following form.

[
a11

]
⊕

[
b11 b12
b21 b22

]
=

a11 0 0

0 b11 b12
0 b21 b22


Block diagonal matrices behave in a civilized manner with respect to taking determinants and

computing their characteristic matrices. Consequently, the determinant, characteristic polynomial,

and minimal polynomial of a block diagonal matrix can be easily deduced as follows.

Proposition 2.9.6. Given any square matrices A1, . . . , Ak, we have that

det(A1 ⊕ · · · ⊕ Ak) = det(A1) · · · det(Ak).

Proof. By definition of the direct sum of matrices, we have the following.

A1 ⊕ · · · ⊕ Ak =

A1 0 0

0
. . . 0

0 0 Ak


By Corollary 2.1.13, there exist scalars α1, . . . , αk such that det(Ai) = αi det(RREF(Ai)) for each

integer 1 ≤ i ≤ k. Considering that the matrix A1⊕· · ·⊕Ak is block diagonal, performing elementary

row operations on any submatrix Ai does not affect any of the other submatrices, hence we may

reduce each of the matrices A1, . . . , Ak to its reduced row echelon form at the cost of some scalar.

det(A1 ⊕ · · · ⊕ Ak) = α1 · · ·αk

∣∣∣∣∣∣∣
RREF(A1) 0 0

0
. . . 0

0 0 RREF(Ak)

∣∣∣∣∣∣∣
Either the reduced row echelon form of each of the matrices A1, . . . , Ak is the appropriately-sized

identity matrix, or the reduced row echelon form of some matrix possesses a zero row. Certainly,

in the first case, the determinant of the matrix in the above displayed equation is one, and we

conclude that det(A1⊕· · ·⊕Ak) = α1 · · ·αk. Even more, the determinant of each matrix Ai satisfies

that det(Ai) = αi, hence it holds that det(A1 ⊕ · · · ⊕ Ak) = det(A1) · · · det(Ak). Conversely, if the

reduced row echelon form of some matrix possesses a zero row, then the determinant of the matrix

in the above displayed equation is zero so that det(A1 ⊕ · · · ⊕ Ak) = 0 = det(A1) · · · det(Ak).

Corollary 2.9.7. Given any square matrices A1, . . . , Ak with respective characteristic polynomials

χ1(x), . . . , χk(x), the characteristic polynomial of A1 ⊕ · · · ⊕ Ak is χ1(x) · · ·χk(x).
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Proof. Considering that xI − (A1 ⊕ · · · ⊕ Ak) = (xI − A1) ⊕ · · · ⊕ (xI − Ak), the claim follows

immediately from the definition of the characteristic polynomial and Proposition 2.9.6.

Proposition 2.9.8. Given any square matrices A1, . . . , Ak with respective minimal polynomials

µ1(x), . . . , µk(x), the minimal polynomial of A1 ⊕ · · · ⊕ Ak is lcm(µ1(x), . . . , µk(x)).

Proof. We claim that for any polynomial p(x), we have that p(A1⊕· · ·⊕Ak) = p(A1)⊕· · ·⊕p(Ak).

Considering that the identity α(A1 ⊕ · · · ⊕ Ak) = (αA1) ⊕ · · · ⊕ (αAk) clearly holds, it suffices to

prove that (A1 ⊕ · · · ⊕ Ak)
n = (An

1 )⊕ · · · ⊕ (An
k) for any positive integer n: indeed, we have that

(A1 ⊕ · · · ⊕ Ak)
2 =

A1 0 0

0
. . . 0

0 0 Ak


A1 0 0

0
. . . 0

0 0 Ak

 =

A
2
1 0 0

0
. . . 0

0 0 A2
k

 = (A2
1)⊕ · · · ⊕ (A2

k)

because the only nonzero entries of this matrix product come from the rows and columns corre-

sponding to the matrix Ai for each integer 1 ≤ i ≤ k. Certainly, it is possible to repeat this process

for any positive integer n, hence the desired identity p(A1 ⊕ · · · ⊕Ak) = p(A1)⊕ · · · ⊕ p(Ak) holds.

Consider the least common multiple p(x) = lcm(µ1(x), . . . , µk(x)) of the minimal polynomials

of A1, . . . , Ak. By definition, for each integer 1 ≤ i ≤ k, there exists a polynomial qi(x) such that

p(x) = µi(x)qi(x), from which it follows that p(x) annihilates the matrices A1, . . . , Ak. Consequently,

we find that p(x) annihilates A1⊕· · ·⊕Ak, hence by Proposition 2.3.9, we conclude that p(x) must

be divisible by the minimal polynomial µ(x) of A1 ⊕ · · · ⊕ Ak. Conversely, if µ(x) annihilates the

direct sum A1⊕· · ·⊕Ak, then it must annihilate each of the matrices A1, . . . , Ak because it holds by

the previous paragraph that µ(A1 ⊕ · · · ⊕Ak) = µ(A1)⊕ · · · ⊕ µ(Ak), and the latter is equal to the

zero matrix if and only if µ(Ai) is equal to the zero matrix for each integer 1 ≤ i ≤ k. By Proposition

2.3.9, µ(x) is divisible by µ1(x), . . . , µk(x), hence it is divisible by p(x) = lcm(µ1(x), . . . , µk(x)).

We are at last ready to construct the Rational Canonical Form of a real n× n matrix.

Definition 2.9.9 (Rational Canonical Form). Consider any (real) n × n matrix A with invariant

factors p1(x), p2(x), . . . , pℓ(x) whose companion matrices are Cp1(x), Cp2(x), . . . , Cpℓ(x), respectively.

We define the Rational Canonical Form of A as the (real) n× n matrix

RCF(A) = Cp1(x) ⊕ Cp2(x) ⊕ · · · ⊕ Cpℓ(x) =


Cp1(x) 0 0 0

0 Cp2(x) 0 0

0 0
. . . 0

0 0 0 Cpℓ(x)


Example 2.9.10. Let us compute the Rational Canonical Form for the matrix of Example 2.8.2.

A =

[
1 0

1 −1

]
We proved in that example that the only invariant factor of A is (x−1)(x+1) = x2−1. Consequently,

the Rational Canonical Form for A is the companion matrix of this quadratic polynomial.

RCF(A) = Cx2−1 =

[
0 1

1 0

]
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Example 2.9.11. Let us compute the Rational Canonical Form for the matrix of Example 2.8.3.

A =

[
0 1

0 0

]
We proved in that example that the only invariant factor of A is x2. Like the previous example, the

Rational Canonical Form for A must be the companion matrix of x2.

RCF(A) = Cx2 =

[
0 0

1 0

]
Example 2.9.12. Let us compute the Rational Canonical Form for the matrix of Example 2.8.4.

A =

1 1 1

2 2 2

3 3 3


We proved in that example that the invariant factors of A are x and x(x−6) = x2−6x. Consequently,

the Rational Canonical Form for A is the direct sum of the companion matrices of x and x2 − 6x.

RCF(A) = Cx ⊕ Cx2−6x =
[
0
]
⊕

[
0 0

1 6

]
=

0 0 0

0 0 0

0 1 6


Example 2.9.13. Let us compute the Rational Canonical Form for the matrix of Example 2.8.5.

A =

1 0 2

0 1 0

0 0 1


Considering that the invariant factors of A are x−1 and (x−1)2 = x2−2x+1 by the example, the

Rational Canonical Form for A is the direct sum of the companion matrices of x−1 and x2−2x+1.

RCF(A) = Cx−1 ⊕ Cx2−2x+1 =
[
1
]
⊕
[
0 −1

1 2

]
=

1 0 0

0 0 −1

0 1 2


Example 2.9.14. Consider any matrix A whose invariant factors are x − 1 and (x − 1)(x − 2).

Observe that any such matrix must be a 3× 3 matrix. By definition, the Rational Canonical Form

for such a matrix is the direct sum of the companion matrices of x−1 and (x−1)(x−2) = x2−3x+2.

RCF(A) = Cx−1 ⊕ Cx2−3x+2 =
[
1
]
⊕
[
0 −2

1 3

]
=

1 0 0

0 0 −2

0 1 3


Example 2.9.15. Consider any matrix A whose invariant factors are x, x2, and x3(x+1)2. Observe

that any such matrix must be an 8×8 matrix. By definition, the Rational Canonical Form for such

a matrix is the direct sum of the companion matrices of x, x2, and x3(x+ 1)2 = x5 + 2x4 + x3.

RCF(A) = Cx ⊕ Cx2 ⊕ Cx5+2x4+x3 =
[
0
]
⊕
[
0 0

1 0

]
⊕


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 −2


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Example 2.9.16. Consider any matrix A whose invariant factors are x, x, x2(x2 + 1) = x4 + x2,

and x3(x− 1)(x2+1) = x3(x3−x2+x− 1) = x6−x5+x4−x3. Observe that any such matrix must

be a 12 × 12 matrix. By definition, the Rational Canonical Form for such a matrix is the direct

sum of the companion matrices of x, x, x4 + x2, and x6 − x5 + x4 − x3.

RCF(A) = Cx ⊕ Cx ⊕ Cx4+x2 ⊕ Cx6−x5+x4−x3

=
[
0
]
⊕

[
0
]
⊕


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 0

⊕
[
0
]
⊕


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 0

⊕



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 −1

0 0 0 0 1 1


Example 2.9.17. Consider any matrix A with two invariant factors of x2(x2+x+1) = x4+x3+x2.

Observe that any such matrix must be an 8× 8 matrix, and the Rational Canonical Form for such

a matrix must be the direct sum of the companion matrix of x4 + x3 + x2 with itself.

RCF(A) = Cx4+x3+x2 ⊕ Cx4+x3+x2 =


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 −1

⊕


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 −1


2.10 The Jordan Canonical Form

Like the Rational Canonical Form, the Jordan Canonical Form of an n × n matrix is a block

diagonal matrix built as a direct sum of square matrices that are obtained from the Smith Normal

Form of the characteristic matrix. Explicitly, suppose that A is a (real) n×nmatrix with elementary

divisors (x−ci1)
ei1 , . . . , (x−cik)

eik .We refer to the following eij×eij upper-triangular matrix J(x−cij)
eij

as the Jordan matrix (or Jordan block) corresponding to the elementary divisor (x− cij)
eij .

J(x−cij)
eij =


cij 1 0 · · · 0

0 cij 1 · · · 0

0 0 cij
. . . 0

...
...

...
. . . 1

0 0 0 · · · cij


Put another way, the Jordan matrix corresponding to the elementary divisor (x−cij)

eij is the eij×eij
upper-triangular matrix consisting of cij on the diagonal and ones along the superdiagonal.

Example 2.10.1. By definition, the Jordan matrix corresponding to any linear polynomial x + c

is the 1× 1 matrix Jx+c =
[
−c

]
. One might recognize this as the companion matrix of x+ c.

Example 2.10.2. By definition, the Jordan matrix corresponding to the polynomial (x−1)2 is the

2× 2 upper-triangular matrix with ones along the diagonal and ones along the superdiagonal.

J(x−1)2 =

[
1 1

0 1

]
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Example 2.10.3. By definition, the Jordan matrix corresponding to the polynomial (x+3)3 is the

3× 3 upper-triangular matrix with −3s along the diagonal and ones along the superdiagonal.

J(x+3)3 =

−3 1 0

0 −3 1

0 0 −3


Definition 2.10.4 (Jordan Canonical Form). Consider any (real) n×n matrix A with elementary

divisors (x− ci1)
ei1 , (x− ci2)

ei2 , . . . , (x− cik)
eik and their corresponding Jordan matrices J(x−ci1)ei1 ,

J(x−ci2)ei2 , . . . , J(x−cik)
eik . We define the Jordan Canonical Form of A as the n× n matrix

JCF(A) = J(x−ci1)ei1 ⊕ J(x−ci2)ei2 ⊕ · · · ⊕ J(x−cik)
eik =


J(x−ci1)ei1 0 0 0

0 J(x−ci2)ei2 0 0

0 0
. . . 0

0 0 0 J(x−cik)
eik


Example 2.10.5. Let us compute the Jordan Canonical Form for the matrix of Example 2.8.2.

A =

[
1 0

1 −1

]
We proved in that example that the elementary divisors of A are x − 1 and x + 1. Consequently,

the Jordan Canonical Form for A is the direct sum of the 1× 1 Jordan matrices Jx−1 and Jx+1.

JCF(A) = Jx−1 ⊕ Jx+1 =
[
1
]
⊕
[
−1

]
=

[
1 0

0 −1

]
Example 2.10.6. Let us compute the Jordan Canonical Form for the matrix of Example 2.8.3.

A =

[
0 1

0 0

]
We proved in that example that the only elementary divisor of A is x2. Like the previous example,

the Jordan Canonical Form for A must be the 2× 2 Jordan matrix Jx2 .

JCF(A) = Jx2 =

[
0 1

0 0

]
Example 2.10.7. Let us compute the Jordan Canonical Form for the matrix of Example 2.8.4.

A =

1 1 1

2 2 2

3 3 3


We proved in that example that the elementary divisors of A are x, x, and x− 6. Consequently, the

Jordan Canonical Form for A is the direct sum of the 1× 1 Jordan matrices Jx, Jx, and Jx−6.

JCF(A) = Jx ⊕ Jx ⊕ Jx−6 =
[
0
]
⊕
[
0
]
⊕
[
6
]
=

0 0 0

0 0 0

0 0 6


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Example 2.10.8. Let us compute the Jordan Canonical Form for the matrix of Example 2.8.5.

A =

1 0 2

0 1 0

0 0 1


By the example, the elementary divisors of A are x − 1 and (x − 1)2, hence the Jordan Canonical

Form for A is the direct sum of the 1× 1 Jordan matrix Jx−1 and the 2× 2 Jordan matrix J(x−1)2 .

JCF(A) = Jx−1 ⊕ J(x−1)2 =
[
1
]
⊕
[
1 1

0 1

]
=

1 0 0

0 1 1

0 0 1


Example 2.10.9. Consider any matrix A whose elementary divisors are x − 1, x − 1, and x − 2.

Observe that any such matrix must be a 3 × 3 matrix. By definition, the Jordan Canonical Form

for such a matrix is the direct sum of the Jordan matrices Jx−1, Jx−1, and Jx−2.

JCF(A) = Jx−1 ⊕ Jx−1 ⊕ Jx−2 =
[
1
]
⊕
[
1
]
⊕
[
2
]
=

1 0 0

0 1 0

0 0 2


Example 2.10.10. Consider any matrix A whose elementary divisors are x, x2, x3, and (x + 1)2.

Observe that any such matrix must be an 8× 8 matrix. By definition, the Jordan Canonical Form

for such a matrix is the direct sum of the Jordan matrices corresponding to x, x2, x3, and (x+1)2.

JCF(A) = Jx ⊕ Jx2 ⊕ Jx3 ⊕ J(x+1)2 =
[
0
]
⊕
[
0 1

0 0

]
⊕

0 1 0

0 0 1

0 0 0

⊕
[
−1 1

0 −1

]

Example 2.10.11. Consider any real matrix A whose invariant factors are x, x, x2(x2 + 1), and

x3(x− 1)(x2 + 1). Observe that both roots of the polynomial x2 + 1 are complex numbers: indeed,

the roots of x2 +1 are i and −i. Consequently, if we view A a real matrix, then A does not admit a

Jordan Canonical Form. Explicitly, the Jordan Canonical Form is built from the Jordan matrices

corresponding to powers of linear polynomials: if x2 + 1 is an elementary divisor of A, then viewed

as a real polynomial, this polynomial does not split as a product of linear polynomials; however, if

we view A as a matrix whose entries are complex numbers, then we may view x2+1 as a polynomial

with complex coefficients, hence it is permissible to factor x2 + 1 as (x+ i)(x− i). Under this lens,

the elementary divisors of A are x, x, x2, x3, x − 1, x − i, x + i, x − i, and x + i. Consequently, the

Jordan Canonical Form for A is the following 12× 12 complex upper-triangular matrix.

JCF(A) = Jx ⊕ Jx ⊕ Jx2 ⊕ Jx3 ⊕ Jx−1 ⊕ Jx−i ⊕ Jx+i ⊕ Jx−i ⊕ Jx+i

=
[
0
]
⊕

[
0
]
⊕

[
0 1

0 0

]
⊕

0 1 0

0 0 1

0 0 0

⊕
[
1
]
⊕
[
i
]
⊕
[
−i

]
⊕
[
i
]
⊕
[
−i

]
Example 2.10.12. Consider any matrix A with elementary divisors of x2, x2, x2 + x + 1, and

x2 + x + 1. Observe that the Jordan Canonical Form for such a matrix exists if and only if we
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view A as a matrix with complex entries: indeed, the polynomial x2 + x+ 1 has two complex roots

−1
2
+

√
3
2
i and −1

2
−

√
3
2
i. Consequently, the Jordan Canonical Form for A is the following.

JCF(A) = Jx2 ⊕ Jx2 ⊕ J
x+ 1

2
−

√
3
2
i
⊕ J

x+ 1
2
+

√
3

2
i
=

[
0 1

0 0

]
⊕
[
0 1

0 0

]
⊕

[
−1

2
+

√
3

2
i

]
⊕
[
−1

2
−

√
3

2
i

]
Remark 2.10.13. Examples 2.10.11 and 2.10.12 raise an important point regarding the Jordan

Canonical Form of a square matrix A: it exists if and only if the elementary divisors of A are all

power of linear polynomials. Consequently, if we want the Jordan Canonical Form to exist for any

square matrix, we must assume that the entries of our matrix lie in an algebraically closed field,

i.e., we must ensure that the characteristic polynomial of our matrix can be written as a product of

(not necessarily distinct) linear polynomials. Often, the caveat with the Jordan Canonical Form is

that it is an upper-triangular matrix with entries in the complex numbers. Conversely, the Rational

Canonical Form of a matrix always exists; however, it is rarely an upper-triangular matrix. Even

still, in most cases, the Jordan Canonical Form is preferable to the Rational Canonical Form because

of its upper-triangular form. One can prove that the determinant of a matrix is the product of its

eigenvalues, hence the product of the eigenvalues of a real matrix must be a real number. We could

have predicted this based on the fact that complex roots come in conjugate pairs whose product

is a real number. Even more, the trace of a matrix is the sum of the diagonal components of the

matrix; this can be achieved as the sum of the eigenvalues. Once again, if the matrix is real, then

the sum of its eigenvalues is a real number because each conjugate pair of complex eigenvalues sum

to a real number. Consequently, the requirement to pass to the complex numbers is not detrimental.



Chapter 3

Inner Product Spaces

Previously, we dedicated the second chapter of these lecture notes to the algebraic properties of

matrices. Explicitly, we studied determinants, characteristic polynomials, minimal polynomials,

eigenvalues, eigenvectors, eigenspaces, and canonical forms for matrices such as the Smith Normal

Form, the Rational Canonical Form, and the Jordan Canonical Form. We noticed in our study of

eigenvalues, eigenvectors, and eigenspaces that these algebraic objects possess some innate geometric

properties. Explicitly, the Spectral Theorem tells us that every real symmetric matrix induces a

basis of eigenvectors for the space of real column vectors for which every pair of eigenvectors

corresponding to distinct eigenvalues is orthogonal. We are interested throughout this chapter in

further unravelling the geometry of vector spaces that admit a notion of orthogonality.

3.1 Real n-Space

Consider the set R consisting of real numbers. Like usual, we may geometrically realize R as a line

(the real number line) consisting of points x that lie a distance of |x| from the origin 0 for each

real number x. Explicitly, the point π lies π units to the right of the origin, and the point −e lies

e units to the left of the origin. Given any pair of real numbers a ≤ b, the distance between the

points a and b in R is given by the length of the closed interval [a, b]; we learn back in calculus that

this distance is exactly the real number b − a. Consequently, the real numbers R give rise to the

geometric notions of a line and the notion of distance between two points on a line.

R0−e π

One can only move forward and backward on the real number line, hence the geometry of R
is (in this sense) quite simple. On the other hand, suppose that we want to keep track of both

east-west movement and north-south movement. Given that an object lies x units from the origin

in the east-west direction and y units in the north-south direction, we may canonically express this

data as the ordered pair (x, y). Explicitly, if a particle lies 1 unit west and 2 units north of the

origin (0, 0), then it lies 1 unit to the left of the origin on the x-axis and 2 units north of the origin

on the y-axis; the location of the particle in this case can be written as the ordered pair (−1, 2). We

refer to the collection of all ordered pairs of real numbers (x, y) as the Cartesian product R×R
of the real numbers with itself, i.e., we have that R × R = {(x, y) | x and y are real numbers}.

117
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Graphically, the points in R × R form a plane, so R × R is often called the Cartesian plane.

Conventionally, the Cartesian plane is denoted by R2 and referred to also as real 2-space.

x

y

(0, 0)(−1, 0)

(0, 2)(−1, 2)

Going one step further, let us keep track of east-west, north-south, and up-down movements.

Explicitly, if x measures the location of a particle in the x-axis; y measures the location of a particle

in the y-axis; and z measures the location of particle in the z-axis, then the ordered triple (x, y, z)

conveniently encapsulates this information. Like before, if the particle lies 3 units east of the origin;

3 units north of the origin; and 1 unit above the origin, then the particle’s location is given by the

ordered triple (3, 3, 1). We denote by R3 the collection of all ordered triples of real numbers, i.e., we

have that R3 = {(x, y, z) | x, y, and z are real numbers}; we refer to R3 as real 3-space.

z

x

y

(3, 0, 0)

(0, 3, 0)

(0, 0, 1)
(3, 3, 1)

Once and for all, if n is a positive integer, then we will denote by Rn the collection of all n-tuples

of real numbers, i.e., we have that Rn = {(x1, x2, . . . , xn) | x1, x2, . . . , xn are real numbers}. Like be-
fore with real column vectors, we will use a capital letter X to denote a real n-tuple (x1, x2, . . . , xn);

we refer to the real number x1 as the first coordinate of X; we refer to the real number x2 as

the second coordinate of X; we refer to the real number xn as the nth coordinate of X; and in

general, we refer to xi as the ith coordinate of X for each integer 1 ≤ i ≤ n. Every point in real

n-space is uniquely determined by its coordinates. Explicitly, if (x1, x2, . . . , xn) = (y1, y2, . . . , yn),

then each of the coordinates on the left-hand side must be equal to the corresponding coordinate

on the right-hand side, i.e., yi = xi for all integers 1 ≤ i ≤ n. Even though it is not possible to
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envision points in real n-space for n ≥ 5, it is still meaningful to discuss this notion. Explicitly,

every set of data consisting of n distinct real parameters induces an element of real n-space Rn.

Our next proposition illustrates that Rn forms a real n-dimensional vector space.

Proposition 3.1.1. Real n-space Rn forms a real vector space of dimension n.

Proof. We define addition of points in real n-space componentwise by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

Considering that addition of real numbers constitutes an associative and commutative binary op-

eration on the real numbers, conditions (1.), (2.), and (3.) of Definition 1.6.5 are satisfied. Even

more, the zero vector in Rn is the n-tuple O = (0, 0, . . . , 0), and for any real n-tuple (x1, x2, . . . , xn),

we have that −(x1, x2, . . . , xn) = (−x1,−x2, . . . ,−xn). We conclude that conditions (4.) and (5.)

of the definition hold, hence we may turn our attention to scalar multiplication in Rn. We define

α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn) for any real number α and any real n-tuple (x1, x2, . . . , xn).

Considering that multiplication of real numbers constitutes an associative, commutative, and dis-

tributive binary operation on the real numbers, it follows that Rn is a real vector space.

Last, the dimension of Rn is n: the standard basis of Rn consists of the vectors Ei whose ith

coordinate is 1 and whose other coordinates are 0, i.e., E1 = (1, 0, . . . , 0), E2 = (0, 1, . . . , 0), etc.

Example 3.1.2. Consider the points X = (1, 1,−1), Y = (1, 2, 3), and Z = (0,−2,−2) in R3.

Observe that X + Y = (2, 3, 2), −Z = (0, 2, 2), Y − Z = (1, 4, 5), and 3X = (3, 3,−3).

Consequently, we will henceforth refer to points in real n-space as both points and vectors.

By Theorem 1.13.12, if we wish to understand any real vector space of dimension n, it suffices to

understand the real vector space Rn; the advantage of dealing directly with real n-space itself is

that we have access to Euclidean geometry. Our aim throughout this chapter is to develop this

tool. We begin by defining a notion of distance in real n-space. Given any points X = (x1, . . . , xn)

and Y = (y1, . . . , yn) in Rn, we define the distance between X and Y as the following real number.

d(X, Y ) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

Consequently, the distance from the origin to the point X is given and denoted as follows.

∥X∥ = d(X,O) =
√

x2
1 + · · ·+ x2

n

Often, we will simply refer to the quantity ∥X∥ as the magnitude of the vector X. We note that

this definition of distance is merely a generalization of the length of the hypotenuse of the right

triangle formed by the x-axis, the y-axis, and a point in the Cartesian plane: indeed, if we could

visualize the right triangle formed by the origin of Rn, the point (x1, x2, . . . , xn−1, 0), and the point

X = (x1, x2, . . . , xn−1, xn) in Rn, then the length of its hypotenuse is precisely ∥X∥.

Example 3.1.3. Consider the vectors X, Y, and Z from Example 3.1.2. Computing the magnitudes

of each vector yields ∥X+Y ∥ =
√
22 + 32 + 22 =

√
17 and ∥−Z∥ =

√
02 + 22 + 22 = 2

√
2 = ∥Z∥ and

∥3X∥ =
√

32 + 32 + (−3)2 = 3
√
3 = 3∥X∥; these last two examples indicate a general phenomenon.

Proposition 3.1.4. Consider any positive integer n and any vector X = (x1, . . . , xn) of Rn.
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1.) We have that ∥X∥ = 0 if and only if X is the zero vector.

2.) We have that ∥αX∥ = |α|∥X∥ for all real numbers α.

Proof. (1.) By definition, we have that ∥X∥ =
√
x2
1 + · · ·+ x2

n = 0 if and only if x2
1 + · · ·+ x2

n = 0.

Clearly, if X is the zero vector, then x1 = · · · = xn = 0 so that x2
1 + · · · + x2

n = 02 + · · · + 02 = 0.

Conversely, if X is a nonzero vector, then its ith coordinate xi must be nonzero for some integer

1 ≤ i ≤ n. Considering that the square of a nonzero real number if a positive real number, we

have that x2
i > 0. Even more, the square of any real number is non-negative, hence we have that

∥X∥2 = x2
1 + · · ·+ x2

n ≥ x2
i > 0. We conclude that ∥X∥ must be nonzero if X is nonzero.

(2.) We define αX = α(x1, . . . , xn) = (αx1, . . . , αxn). Consequently, the definition of magnitude

yields ∥αX∥ =
√
(αx1)2 + · · ·+ (αxn)2 =

√
α2(x2

1 + · · ·+ xn)2 = |α|
√
x2
1 + · · ·+ x2

n = |α|∥X∥.

Conventionally, vectors of magnitude one are referred to as unit vectors. By Proposition 3.1.4,

every nonzero vector X gives rise to a unique unit vector 1
∥X∥X.

Corollary 3.1.5. Every nonzero vector X of Rn induces a unit vector 1
∥X∥X of Rn.

Proof. By Proposition 1.14.11, if X is any nonzero vector of Rn, then ∥X∥ is a positive real number.

Consequently, we have that α = 1
∥X∥ is a positive real number such that ∥αX∥ = α∥X∥ = 1.

Example 3.1.6. Consider the vectors X, Y, and Z from Example 3.1.2. We demonstrated that

∥X + Y ∥ =
√
17 and ∥Z∥ = 2

√
2, hence 1√

17
(X + Y ) and 1

2
√
2
Z are unit vectors of R3.

Even more, vectors in real n-space can be considered as rays (or arrows) emanating from the

origin and extending to a point in real n-space. Explicitly, the vector X = (1, 2, 3, 4) of R4 can be

represented by the ray extending from the origin (0, 0, 0, 0) to the point (1, 2, 3, 4) in R4. We refer to

the vector X in this case as lying in standard position. Often, we will restrict our attention to the

Cartesian plane R2 or real 3-space R3, where we can visualize this notion. Under this identification,

vector addition can be described geometrically as follows: if we determine the vector sum X + Y,

then we may realize X and Y as rays emanating from the origin; translate Y so that the “foot” of

Y lies as the “head” of X; and draw the ray emanating from the “foot” of X to the “head” of Y.

Considering that vector addition is commutative, one could also determine X+Y by translating X

so that the “foot” of X lies at the “head” of Y and subsequently drawing the raw emanating from

the “foot” of Y to the “head” of X. Either way, this situation can be visualized as follows.

Y

X

Y

X

X + Y

We refer to the process of computing the vector sum X + Y pictorially in this way as the Par-

allelogram Law. Observe that for any vector X, the vector −X satisfies that X + (−X) = O.

Consequently, if we place the “foot” of −X at the “head” of X and draw the ray emanating from

the “foot” of X to the “head” of −X, we obtain the zero vector. Put another way, the “head” of the

translated −X and the “foot” of X coincide, hence −X is nothing more than X in the opposite

direction. We are therefore able to describe vector subtraction pictorially as follows.
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−Y

Y−Y

XX

X − Y

We will henceforth say to two vectors X and Y in Rn are parallel if there exists a nonzero real

number α such that Y = αX. By extension of the previous definition, we will say then that X and

αX have the same direction if α > 0; they have the opposite direction if α < 0. Certainly, a

pair of vectors in Rn need not be parallel, hence in general, it might not be possible to say that an

arbitrary pair of vectors have the same direction or the opposite direction.

Example 3.1.7. Observe that the vectors X = (1, 0,−1) and Y = (−3, 0, 3) are parallel because we

have that Y = −3X, hence X and Y have the opposite direction; however, the vector Z = (−1, 1, 1)

is not parallel to either X or Y. We will soon see that it is in fact perpendicular to both X and Y.

3.2 The Dot Product

Consider any pair of vectors X and Y lying in standard position in real n-space Rn for some positive

integer n. Certainly, if n = 2 or n = 3, then we could visualize X and Y in the Cartesian plane R2

or in the real 3-space R3 that we occupy; more specifically, we could take a protractor and measure

the angle θ formed by the intersection of X and Y at the origin. Pictorially, we have the following.

−Y

Y−Y

XX

X − Y

X − Y

θ

Consequently, by applying the Law of Cosines to this triangle, we obtain the following formula.

∥X − Y ∥2 = ∥X∥2 + ∥Y ∥2 − 2∥X∥∥Y ∥ cos(θ)

Observe that if X = (x1, . . . , xn) and Y = (y1, . . . , yn), then by definition of the magnitude of a

vector, it holds that ∥X∥2 = x2
1 + · · ·+ x2

n and ∥Y ∥2 = y21 + · · ·+ y2n so that

∥X − Y ∥2 = (x1 − y1)
2 + · · ·+ (xn − yn)

2 = x2
1 + · · ·+ x2

n + y21 + · · ·+ y2n − 2(x1y1 + · · ·+ xnyn).

Combining this formula with the Law of Cosines formula from above yields that

∥X∥2 + ∥Y ∥2 − 2∥X∥∥Y ∥ cos(θ) = ∥X − Y ∥2 = ∥X∥2 + ∥Y ∥2 − 2(x1y1 + · · ·+ xnyn)

so that ∥X∥∥Y ∥ cos(θ) = x1y1 + · · · + xnyn. We refer to the real number x1y1 + · · · + xnyn as the

dot product of the real vectors X and Y, and we write X · Y = x1y1 + · · ·+ xnyn. We are already

familiar with the vector dot product of the first two chapters; the dot product of vectors in Rn

behaves in the same way as the vector dot product, but its output is a real number rather than a

real 1× 1 matrix. We demonstrate next that the dot product informs the geometry of Rn.
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Proposition 3.2.1. Given any pair of nonzero vectors X and Y lying in standard position in Rn,

the angle θ of intersection between the vectors X and Y satisfies that

θ = cos−1

(
X · Y

∥X∥∥Y ∥

)
Essentially, the formula is obtained from the previous paragraph by solving for θ in the identity

X ·Y = ∥X∥∥Y ∥ cos(θ). Often, we will refer to the formulaX ·Y = ∥X∥∥Y ∥ cos(θ) as the geometric

interpretation of the dot product. Like before with the vector dot product, we will say that the

real vectors X and Y in Rn are orthogonal if and only if it holds that X · Y = 0.

Example 3.2.2. Consider the vectors X = (1, 1,−1), Y = (1, 2, 3), and Z = (0,−2,−2) in R3. By

definition of the dot product, we obtain the following identities.

X ·X = (1)(1) + (1)(1) + (−1)(−1) = 3

X · Y = (1)(1) + (1)(2) + (−1)(3) = 0

X · Z = (1)(0) + (1)(−2) + (−1)(−2) = 0

Y · Z = (1)(0) + (2)(−2) + (3)(−2) = −10

Consequently, we have that X is orthogonal to both Y and Z, but X is not orthogonal to itself,

and Y is not orthogonal to Z. Even more, we have that X ·X = ∥X∥2.

Example 3.2.3. Consider the vectors X = (1, 2, 0, 2) and Y = (−3, 1, 1, 5) in R4. Even though we

cannot visualize these vectors because they live in real 4-space, we can find the angle θ between

them. By definition of the magnitude of a vector, we have that ∥X∥ =
√
12 + 22 + 02 + 22 =

√
9 = 3

and ∥Y ∥ =
√

(−3)2 + 12 + 12 + 52 =
√
36 = 6. By definition of the dot product, we have that

X · Y = (1)(−3) + (2)(1) + (0)(1)(+(2)(5) = 9. Consequently, we conclude that

θ = cos−1

(
X · Y

∥X∥∥Y ∥

)
= cos−1

(
9

(3)(6)

)
= cos−1

(
1

2

)
= 60◦.

Proposition 3.2.4. Given any nonzero, non-parallel vectors X and Y lying in standard position

in Rn, the area of the parallelogram spanned by X and Y is ∥X∥∥Y ∥ sin(θ).

Proof. Pictorially, the parallelogram spanned by X and Y can be determined as follows.

X

Y

h
θ

Observe that the angle θ between X and Y satisfies that h = ∥X∥ sin(θ). Because the area of a

parallelogram is the base times the height of the parallelogram, it is h∥Y ∥ = ∥X∥∥Y ∥ sin(θ).

We illustrate next that the dot product satisfies many nice arithmetic properties.

Proposition 3.2.5. Consider any vectors X, Y, and Z of Rn.

1.) We have that X · Y = Y ·X, i.e., the dot product is commutative.
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2.) We have that X · (Y + Z) = X · Y +X · Z, i.e., the dot product is distributive.

3.) We have that (αX) · Y = α(X · Y ) = X · (αY ) for all real numbers α.

4.) We have that X ·X = ∥X∥2. Consequently, X ·X is nonzero if and only if X is nonzero.

Proof. (1.) Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) for some real numbers x1, . . . , xn, y1, . . . , yn.

Considering that multiplication of real numbers is commutative, for each integer 1 ≤ i ≤ n, we have

that xiyi = yixi, from which it follows that X · Y = x1y1 + · · ·+ xnyn = y1x1 + · · ·+ ynxn = Y ·X.

(2.) Given any vector Z = (z1, . . . , zn) of Rn, we have that Y + Z = (y1 + z1, . . . , yn + zn) by

definition of addition in Rn. Considering that multiplication of real numbers is distributive, we have

that X · (Y +Z) = x1(y1+ z1)+ · · ·+xn(yn+ zn) = x1y1+x1z1+ · · ·+xnyn+xnzn = X ·Y +X ·Z.
(3.) We have that αX = (αx1, . . . , αxn) for any real number α by definition of scalar multiplica-

tion in Rn. We conclude that (αX) · Y = (αx1)y1 + · · ·+ (αxn)yn = α(x1y1 + · · ·+ xnyn). Likewise,

we have that αY = (αy1, . . . , αyn) so that X ·(αY ) = x1(αy1)+ · · ·+xn(αyn) = α(x1y1+ · · ·+xnyn).

Each of these values is equal to the other, and they are both equal to α(X · Y ).

(4.) Last, we have that X · X = x2
1 + · · · + x2

n = (
√

x2
1 + · · ·+ x2

n)
2 = ∥X∥2. By Proposition

3.1.4, we have that X ·X is zero if and only if ∥X∥ is zero if and only if X is the zero vector.

By applying the aforementioned properties of the dot product to the situation of orthogonal

vectors, we can prove the following important properties of orthogonal vectors.

Proposition 3.2.6. Consider any vector X and any vectors Y and Z that are orthogonal to X.

1.) We have that X is orthogonal to Y + Z.

2.) We have that X is orthogonal to αY for all real numbers α.

3.) (Pythagorean Theorem) We have that ∥X + Y ∥2 = ∥X∥2 + ∥Y ∥2.

Even more, if X and Y lie in standard position in Rn, then the angle θ of intersection between the

vectors X and Y satisfies that θ = 90◦, i.e., the vectors X and Y are perpendicular.

Proof. (1.) By definition, if X and Y are orthogonal and X and Z are orthogonal, then X · Y = 0

and X · Z = 0. By Proposition 3.2.5, it follows that X · (Y + Z) = X · Y +X · Z = 0.

(2.) By Proposition 3.2.5, we have that X · (αY ) = α(X · Y ) = 0 for all real numbers α.

(3.) By Proposition 3.2.5, the dot product is commutative and distributive so that

∥X + Y ∥ = (X + Y ) · (X + Y ) = X ·X +X · Y + Y ·X + Y · Y = ∥X∥2 + 2(X · Y ) + ∥Y ∥2.

Considering that X and Y are orthogonal, we conclude that 2(X · Y ) = 0, as desired.

Last, if X and Y are orthogonal vectors lying in standard position, then by Proposition 3.2.1,

the angle θ of intersection between the vectors X and Y is given by θ = cos−1(0) = 90◦.

Example 3.2.7. We determine in this example unit vector perpendicular to X = (−1, 3, 4). By

definition, we require a vector U = (u, v, w) such that U ·X = 0 and ∥U∥ = 1. Computing the dot

product of X and U, we find that U · X = −u + 3v + 4w = 0. We have three variables and only

one equation, hence there must be two free variables that we are allowed to set equal to anything
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that is convenient. We will choose u = 0 and v = −4; the resulting equation is 3(−4) + 4w = 0 so

that 4w = 3(4) and w = 3. Consequently, the vector U = (0,−4, 3) is orthogonal to X; however, its

magnitude is
√

02 + (−4)2 + 32 = 5, so it is not a unit vector. By Proposition 3.1.5, we find that
1
5
U is a unit vector; it is orthogonal to X by Proposition 3.2.6 because U is orthogonal to X.

Example 3.2.8. We determine in this example a unit vector perpendicular to X = (−1, 3, 4) and

Y = (2, 1,−1). Like before in Example 3.2.8, we must solve the following system of equations.

−u+ 3v + 4w = (u, v, w) ·X = 0

2u+ v − w = (u, v, w) · Y = 0

By adding twice the first equation to the second equation, we find that 7v + 7w = 0 or v = −w.

We have two equations in three unknowns, so we have one free variable. By declaring that u = 0

and v = 1, we find that w = −1 and U = (0, 1,−1) is orthogonal to X and Y. Considering that

∥U∥ =
√
02 + 12 + (−1)2 =

√
2, we conclude that 1√

2
U is a unit vector orthogonal to X and Y.

Before we conclude this section, we state and prove two inequalities regarding vectors in Rn.

Theorem 3.2.9 (Cauchy-Schwarz Inequality). Given any vectors X and Y of Rn, we have that

|X · Y | ≤ ∥X∥∥Y ∥.

Proof. Clearly, if either X or Y is the zero vector, then X · Y = 0 and ∥X∥∥Y ∥ = 0. Consequently,

we may assume that neither X nor Y is zero. Even more, we may assume that the vectors X and

Y lie in standard position in Rn. By Proposition 3.2.1, we have that

cos(θ) =
X · Y

∥X∥∥Y ∥

for the angle θ between X and Y. Considering that |cos(θ)| ≤ 1, the inequality follows.

Theorem 3.2.10 (Triangle Inequality). Given any vectors X and Y of Rn, we have that

∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥.

Proof. By Proposition 3.1.4, it follows that ∥X + Y ∥, ∥X∥, and ∥Y ∥ are each non-negative real

numbers, hence the desired inequality holds if and only if the inequality ∥X +Y ∥2 ≤ (∥X∥+ ∥Y ∥)2
holds. By Proposition 3.2.5, the left-hand side of this inequality is given by (X + Y ) · (X + Y ). By

the proof of Proposition 3.2.6, we note that (X + Y ) · (X + Y ) = ∥X∥2 + 2(X · Y ) + |Y ∥2. By the

Cauchy-Schwarz Inequality, it follows that 2(X · Y ) ≤ 2∥X∥∥Y ∥, and the desired inequality holds.

∥X + Y ∥2 = ∥X∥2 + 2(X · Y ) + |Y ∥2 ≤ ∥X∥2 + 2∥X∥∥Y ∥+ |Y ∥2 = (∥X∥+ ∥Y ∥)2

3.3 Lines and Planes

Given any pair of points P = (x1, . . . , xn) and Q = (y1, . . . , yn) of real n-space Rn, we may construct

the located vector
−→
PQ beginning at the point P in the direction of the point Q by declaring

that
−→
PQ = ⟨y1−x1, . . . , yn−xn⟩. Pictorially, the located vector

−→
PQ is simply a ray emanating from
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the point P and extending to the point Q. Considering that Rn is a vector space, the located vector−→
PQ can be uniquely identified with the located vector

−−−−−−→
O(Q− P ) beginning at the origin O in the

direction of the vector Q − P = (y1 − x1, . . . , yn − xn) that lies in standard position. Explicitly, if

we view
−→
PQ lying in some hyperplane of Rn, it is simply a translation of

−−−−−−→
O(Q− P ) or Q− P.

Example 3.3.1. Given the points P = (−5,−1) and Q = (−3, 3) in the Cartesian plane R2,

the located vector
−→
PQ beginning at P in the direction of Q is

−→
PQ = ⟨−3 + 5, 3 + 1⟩ = ⟨2, 4⟩.

Essentially, the located vector
−→
PQ contains the same geometric information as the vector Q − P

lying in standard position; it is simply translated away from the origin. Explicitly, we have that

∥
−→
PQ∥ =

√
22 + 42 =

√
20 = 2

√
5 = ∥Q− P∥

for the vector Q− P of R2 lying in standard position. Pictorially, the situation is as follows.

x

y

−→
PQ

−−−−−−→
O(Q− P )

P (−5,−1)

Q(−3, 3)
(Q− P )(2, 4)

Translate 5 units
along the x-axis
and 1 unit along
the y-axis.

Observe that if we translate
−→
PQ a distance of 5 units along the x-axis and a distance of 1 unit along

the y-axis, then the resulting vector is exactly the located vector
−−−−−−→
O(Q− P ) or the vector Q− P.

Example 3.3.2. Consider the points P = (1, 2, 3) and Q = (4, 5, 6) in R2. By definition, the located

vector
−→
PQ beginning at P in the direction of Q is

−→
PQ = ⟨4 − 1, 5 − 2, 6 − 3⟩ = ⟨3, 3, 3⟩. We can

identify
−→
PQ with the vector Q− P = (3, 3, 3) lying in standard position in R3 by translating

−→
PQ a

distance of −1 unit along the x-axis; −2 units along the y-axis; and −3 units along the z-axis.

Observe that the located vector
−→
PQ beginning at the point P and in the direction of the point

Q is always parallel to the vector Q−P of Rn lying in standard position because
−→
PQ and

−−−−−−→
O(Q− P )

are translations of one another. Even more, the coordinates of
−→
PQ and

−−−−−−→
O(Q− P ) are the same,

hence we have that ∥
−→
PQ∥ = ∥

−−−−−−→
O(Q− P )∥ = ∥Q−P∥, i.e., these vectors possess the same magnitude;

however, the benefit of working with located vectors as opposed to vectors lying in standard position

is that we are afforded the luxury of straying away from the origin if we work with located vectors.

We will soon see that this allows us to define lines and planes in real n-space by generalizing these

familiar notions from R2. We had tacitly assumed in the previous sections that we could freely

translate vectors to and from the origin; the exposition so far in this section justifies this.

Given any point P in real n-space Rn, any nonzero vector X lying in standard position in Rn,

and some real variable t, consider the vector equation L(t) = tX + P obtained by viewing P as a

vector of Rn lying in standard position. Graphically, for each real number t, the vector tX +P can
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be constructed by placing the “foot” of the vector P at the “head” of the vector X and drawing

the ray emanating from the origin to the “head” of P ; then, by allowing t to run through all real

numbers, we obtain a collection of points L(t) = {tX + P | t is a real number} that form a line in

Rn in the direction of X passing through the point P. We may understand P as a translation

of X by some distance in each of the coordinate axes of Rn. Often, we will refer to the real variable

t as the parameter (such as time), and we will refer to the vector equation L(t) = tX + P as a

parametric equation in one variable. Let us consider an example to see how this works.

Example 3.3.3. Given the point P = (5, 2) and the vector X = (1, 1) lying in standard position

in R2, the parametrization of the line in the direction of X passing through the point P is

L(t) = tX + P = t(1, 1) + (5, 2) = (t, t) + (5, 2) = (t+ 5, t+ 2).

Clearly, the point P = L(0) lies on the line L(t). Other points on this line include the x-intercept

L(−2) = (3, 0) and the y-intercept L(−5) = (0,−3). Pictorially, we have the following.

x

y

The point P = (−5, 2)

translates the line tX
away from the origin.

L(t)

X

P

L(1)

−2X

P

L(−2)

−5X

P

L(−5)

Crucially, observe that L(t) is a line with slope 1 passing and y-intercept (0,−3). Conventionally,

we write y = x− 3; however, this example illustrates how to capture this information with vectors.

One other way to see this is that L(t) = (t+ 5, t+ 2) yields that x(t) = t+ 5 and y(t) = t+ 2. By

solving for t in each of these identities, we find that t = x− 5 and t = y − 2. Comparing these two

identities in t, we eliminate the variable t to find that y − 2 = x− 5 or y = x− 3.

Example 3.3.4. Conversely, let us illustrate how to express a line in R2 as a parametric equation

L(t). Consider the line y = −2x+ 3 of slope −2 and y-intercept 3. By setting x(t) = t and writing

the pair (x, y) as a vector L(t) = (t,−2t+3), we find that L(t) = (t,−2t)+(0, 3) = t(1,−2)+(0, 3),

hence L(t) is the line in the direction of the vector X = (1,−2) passing through the point P = (0, 3).

Caution: the parametric form of a line is not unique; indeed, we could have just as easily set

x(t) = −1
2
t in the previous example to find that L(t) = (−1

2
t, t+ 3) = t(−1

2
, 1) + 3.

Example 3.3.5. Consider the points P = (1, 2, 3) and the vectorX = (−1, 0, 1) in R3. By definition,

the parametric form of the line in the direction of X passing through the point P is given by

L(t) = tX + P = t(−1, 0, 1) + (1, 2, 3) = (−t, 0, t) + (1, 2, 3) = (−t+ 1, 2, t+ 3).

Consequently, the points L(−1) = (2, 2, 2), L(0) = (1, 2, 3) = P, and L(1) = (0, 2, 4) lie on L(t).

Observe that for each t-value, the y-coordinate of the line L(t) is fixed at y = 2. Put another way,
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L(t) lies entirely in the plane y = 2. On the other hand, as a line in the xz-plane, the parametric

equations x(t) = −t + 1 and z(t) = t + 3 yield that t = 1− x and t = z − 3 so that z − 3 = 1− x

or z = −x+ 4. By parametrizing the line L(t) in terms of x, we find that L(x) = (x, 2,−x+ 4).

Caution: it is not possible in general for n ≥ 3 to express a line in Rn in the form y = mx+b or

z = mx+ b or z = my + b. Explicitly, for n ≥ 3, every line in Rn is given by a parametric equation

of the form L(t) = (at+ b, ct+ d, et+ f) for some real numbers a, b, c, d, e, and f. By solving each

of the equations x(t) = at + b, y(t) = ct + d, and z(t) = et + f in order to eliminate t, we would

obtain three separate linear equations in x and y, x and z, and y and z.

Example 3.3.6. We illustrate next how to determine the parametric form of a line passing through

two points. We assume to this end that the two points in question are P = (1, 1, 1) and Q = (2, 2, 3).

By definition of the line passing through P and Q, we must first determine a vector in the direction

of both P and Q. Observe that the located vector
−→
PQ = ⟨1, 1, 2⟩ does the job exactly. We must

next find a point through which the line passes; by construction, two immediate options are P and

Q. Choosing the point P gives the following parametric equation of the line in a real variable t.

L(t) = t
−→
PQ+ P = t(1, 1, 2) + (1, 1, 1) = (t, t, 2t) + (1, 1, 1) = (t+ 1, t+ 1, 2t+ 1)

Choosing the point Q gives the following parametric equation of the line in a real variable s.

L(s) = s
−→
PQ+Q = s(1, 1, 2) + (2, 2, 3) = (s, s, 2s) + (2, 2, 3) = (s+ 2, s+ 2, 2s+ 3)

One can check that these two parametrizations constitute the same line by comparing coordinates.

t+ 1 = s+ 2

t+ 1 = s+ 2

2t+ 1 = 2s+ 3

Each of these equations yields that t = s + 1 or s = t − 1, hence the above system of equations is

consistent (i.e., there exists a solution), and L(t) and L(s) represent the same line.

Perhaps the most general way to describe an object of codimension one (i.e., dimension n− 1)

in real n-space Rn is by using the dot product. Considering that translation of objects in Rn does

not change their inherent geometric properties, we will begin to view Rn as an affine vector space.

Put simply, this means that we will not distinguish between a vector lying in standard position

and a located vector lying in the plane. Generally, an affine vector space can be obtained from any

vector space by “forgetting” the origin. We will henceforth refer to an (n − 1)-dimensional affine

vector subspace H of Rn as a hyperplane of codimension one. We have already seen in R2 that the

hyperplanes of codimension one are simply lines; likewise, in R3, the hyperplanes of codimension one

are simply planes. Given any point P and any nonzero vector N (not necessarily lying in standard

position) in Rn, we define the hyperplane passing through the point P perpendicular to the

vector N as the collection of points X in Rn such that (X − P ) ·N = 0 or X ·N = P ·N. We refer

to the vector N in this case as the normal vector to the hyperplane X ·N = P ·N.

Example 3.3.7. Consider the point P = (5, 2) and the vector N = (−1, 1) in R2. Every point in

R2 is of the form X = (x, y) for some real numbers x and y. By definition, the hyperplane passing

through P perpendicular to N is given by the set of points X = (x, y) such that X ·N = P ·N or

−x+ y = (x, y) · (−1, 1) = X ·N = P ·N = (5, 2) · (−1, 1) = 5(−1) + 2(1) = −3.
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Consequently, this hyperplane is nothing more than the line y = x− 3 of Example 3.3.3.

Example 3.3.8. Consider the point P = (1, 2, 3) and the vector N = (0, 1, 0) in R3. Every point

in R3 is of the form X = (x, y, z) for some real numbers x, y, and z. By definition, the hyperplane

passing through P perpendicular to N is given by the set of points X = (x, y, z) such that

y = (x, y, z) · (0, 1, 0) = X ·N = P ·N = (1, 2, 3) · (0, 1, 0) = 2.

Consequently, this hyperplane is nothing more than the plane y = 2 of Example 3.3.5.

Example 3.3.9. Consider the point P = (−1, 1, 5, 4) and the vector N = (−1, 2, 4, 5) in R4. Every

point in R4 is of the form X = (w, x, y, z) for some real numbers w, x, y, and z. By definition, the

hyperplane passing through P perpendicular to N consists of all points X = (w, x, y, z) such that

−w + 2x+ 4y + 5z = (w, x, y, z) · (−1, 2, 4, 5) = X ·N = P ·N = (−1, 1, 5, 4) · (−1, 2, 4, 5) = 43.

We can no longer visualize this hyperplane because it exists in four dimensions; however, if we set

w = 0, then we obtain a plane 2x + 4y + 5z = 43 called the projection onto the w-axis. We can

likewise project onto the x-axis by declaring that x = 0 or onto the y-axis by declaring that y = 0.

Observe that for any real number t, we have that (X−P ) · (tN) = t[(X−P ) ·N ] by Proposition

3.2.5, hence if (X − P ) · N = 0, then (X − P ) · (tN) = 0. We may therefore view the hyperplane

X ·N = P ·N passing through the point P perpendicular to the vector N as the hyperplane passing

through the point P perpendicular to the line tN in the direction of N passing through the origin.

One other thing to realize is that if we have an equation a1x1 + · · · + anxn = b of a hyperplane

in Rn, then we may find a point P = (b1, . . . , bn) in Rn for which (b1, . . . , bn) · (a1, . . . , an) = b.

Consequently, we may view the nonzero vectorN = (a1, . . . , an) as a normal vector to the hyperplane

a1x1 + · · ·+ anxn = b. We demonstrate the usefulness of this observation next.

Example 3.3.10. Consider the line y = −2x + 3 of Example 3.3.4. Every point on this line is of

the form (x,−2x + 3), hence for x = 0, we obtain a point P = (0, 3). By rearranging the equation

y = −2x + 3, we find that 2x + y = 3 so that N = (2, 1) is a normal vector that defines this line.

Explicitly, we have that (x, y) · (2, 1) = 2x+ y = 3 = (0, 3) · (2, 1), as desired.

Example 3.3.11. Consider the plane x + y + z = −1. Observe that the point P = (0, 0,−1) lies

on this plane. By reading off the coefficients of the left-hand side of the equation x + y + z = −1,

we find that N = (1, 1, 1) is a normal vector to this plane. Checking the dot product condition for

the normal vector yields that (x, y, z) · (1, 1, 1) = x+ y + z = −1 = (0, 0,−1) · (1, 1, 1).

Remark 3.3.12. Our previous two examples stand as a reminder that if we want to find a point in

a hyperplane a1x1+ · · ·+anxn = b, we may choose n−1 values for n−1 of the variables x1, . . . , xn;

then, we may solve for the remaining variable in terms of the chosen values of the other n− 1.

Given any point P and any nonzero vector N in Rn, we may construct the hyperplane passing

through P perpendicular to N. Back in college algebra, we learn that two points in R2 uniquely

determine a line; this fact is typically stated as the point-slope form of the line. Likewise, it is

true that three non-collinear points in R3 uniquely determine a plane. Last, we discuss a method

for computing the equation of the plane determined by three non-collinear points. Given any pair
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of vectors X = (x1, x2, x3) and Y = (y1, y2, y3) in R3, we define the vector cross product

X × Y =

∣∣∣∣∣∣
E1 E2 E3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2)E1 − (x1y3 − x3y1)E2 + (x1y2 − x2y1)E3

of the vectors X and Y as the symbolic determinant of the standard basis vectors E1, E2, and E3

with the vectors X and Y expressed as the second and third rows, respectively. Crucially, observe

that X × Y is in fact a vector in R3 that satisfies the following properties.

Proposition 3.3.13. Consider any vectors X, Y, and Z in R3.

1.) We have that X × Y = −(Y ×X).

2.) We have that X × (αX) = 0 for all real numbers α.

3.) We have that X × (αY ) = α(X × Y ) for all real numbers α.

4.) We have that (X + Y )× Z = (X × Z) + (Y × Z) and X × (Y + Z) = (X × Z) + (Y × Z).

5.) We have that (X × Y ) · Z = (Z ×X) · Y = (Y × Z) ·X.

6.) We have that (X × Y ) ·X = 0 and (X × Y ) · Y = 0.

Proof. Each of the first three properties follows immediately from Corollary 2.1.13 because the cross

product is defined by a determinant. Likewise, the fourth property follows from Proposition 2.1.7

because the cross product (X+Y )×Z is determined by the matrix whose second row is the sum of

the second row of the matrices that determine X ×Z and Y ×Z. Consequently, it suffices to prove

the fifth, sixth, and seventh properties of the cross product. We will assume that X = (x1, x2, x3),

Y = (y1, y2, y3), and Z = (z1, z2, z3). Computing the cross products yields the following.

X × Y =

∣∣∣∣∣∣
E1 E2 E3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2)E1 − (x1y3 − x3y1)E2 + (x1y2 − x2y1)E3

Y × Z =

∣∣∣∣∣∣
E1 E2 E3

y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ = (y2z3 − y3z2)E1 − (y1z3 − y3z1)E2 + (y1z2 − y2z1)E3

By subsequently taking the dot products, we obtain the following identities.

(X × Y ) · Z = (x2y3 − x3y2)z1 − (x1y3 − x3y1)z2 + (x1y2 − x2y1)z3

= x1y2z3 − x1y3z2 + x2y3z1 − x2y1z3 + x3y1z2 − x3y2z1

= (y2z3 − y3z2)x1 − (y1z3 − y3z1)x2 + (y1z2 − y2z1)x3 = (Y × Z) ·X
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We omit the proof that either of these is equal to (Z × X) · Y because it is the same process.

Consequently, the fifth property of the cross product is established. Combining the first and fifth

properties above, we conclude that (X × Y ) · X = (Y × X) · X = −(X × Y ) · X, hence we must

have that (X × Y ) ·X = 0. Likewise, it follows that (X × Y ) · Y = 0, as desired.

Consequently, the vector cross product yields a tried-and-true method to construct vectors that

are orthogonal to any pair of vectors X and Y. Even more, if X and Y are nonzero, non-parallel

vectors, then X × Y is a normal vector to the plane spanned by X and Y : indeed, for any vector

of the form αX + βY, we have that (X × Y ) · (αX + βY ) = α(X × Y ) ·X + β(X × Y ) · Y = 0. We

are now in a position to determine the plane spanned by any three non-collinear points in R3.

Example 3.3.14. Consider the points P = (1, 2, 3), Q = (2, 5, 0), and R = (−1, 0, 3) in R3. We

obtain a pair of located vectors
−→
PQ = ⟨1, 3,−3⟩ and

−→
PR = ⟨−2,−2, 0⟩ beginning at the point P in

the directions of the points Q and R, respectively. We note that if we wish to determine the equation

of the plane spanned by the non-collinear points P, Q, and R, then it is enough to determine a

vector normal to the vectors X and Y. By Proposition 3.3.13, we achieve this as follows.

N =
−→
PQ×

−→
PR =

∣∣∣∣∣∣
E1 E2 E3

1 3 −3

−2 −2 0

∣∣∣∣∣∣ = −6E1 + 6E2 + 4E3 = (−6, 6, 4)

Choosing any one of the points P, Q, or R and applying the definition of the plane passing through

the point perpendicular to the normal vector N, we obtain the equation of the plane.

−6x+ 6y + 4z = (x, y, z) · (−6, 6, 4) = X ·N = P ·N = (1, 2, 3) · (−6, 6, 4) = −6 + 12 + 12 = 18.

One can simplify this expression to obtain the equation of the plane −3x+ 3y + 2z = 9.

3.4 Inner Products

Generally, there exist vector spaces other than real n-space Rn that admit a notion of lengths and

orthogonality of vectors. Given any vector space V, an inner product on V is an assignment of a

scalar ⟨v, w⟩ to each pair of vectors v and w in a manner consistent with the following properties.

1.) We have that ⟨v, w⟩ = ⟨w, v⟩ for all vectors v and w of V.

2.) We have that ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩ for all vectors u, v, and w of V.

3.) We have that ⟨αv, w⟩ = α⟨v, w⟩ = ⟨v, αw⟩ for all scalars α and all vectors v and w of V.

4.) We have that ⟨v, v⟩ ≥ 0 with equality if and only if v is the zero vector of V.

We refer to the scalar ⟨v, w⟩ as the inner product of the vectors v and w. Often, the fourth

property above is referred to in the literature as the positive-definite property of the inner product.

We are familiar already with examples of inner product spaces from the previous sections.

Example 3.4.1. Consider the real vector space Rn of points in real n-space. By Proposition 3.2.5,

it follows that the scalar dot product ⟨X, Y ⟩ = X · Y constitutes an inner product on Rn.
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Example 3.4.2. Consider the real vector space Rn×1 of real n× 1 column vectors. We claim that

the vector dot product ⟨X, Y ⟩ = X tY constitutes an inner product on Rn×1. Considering that X tY

is a real 1 × 1 matrix, it follows that ⟨X, Y ⟩ = X tY = (X tY )t = Y tX = ⟨Y,X⟩. By Proposition

1.2.6, we have that ⟨X, Y + Z⟩ = X t(Y + Z) = X tY + X tZ = ⟨X, Y ⟩ + ⟨X,Z⟩. By Proposition

1.2.5, it follows that ⟨αX, Y ⟩ = (αX)t = (αX t)Y = α(X tY ) = X t(αY ) = ⟨X,αY ⟩, and both of

these inner products are equal to α⟨X, Y ⟩. Last, we have that ⟨X,X⟩ = X tX =
[
∥X∥2

]
so that

⟨X,X⟩ ≥ 0 with equality if and only if X is the zero vector by the fourth part of Proposition 3.2.5.

Example 3.4.3. Consider the real vector space C0(R) of continuous functions f : R → R. Given any

pair of continuous functions f(x) and g(x), we may define an inner product ⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx.

We must recall from integral calculus that the three properties of an inner product hold: explicitly, it

is plain to see that ⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx =

∫ 1

0
g(x)f(x) dx = ⟨g, f⟩, and for any real number C, it

holds that ⟨Cf, g⟩ =
∫ 1

0
(Cf(x))g(x) = C

∫ 1

0
f(x)g(x) dx = C⟨f, g⟩ =

∫ 1

0
f(x)(Cg(x)) dx = ⟨f, Cg⟩.

Likewise, for any three continuous functions f(x), g(x), and h(x), we have that∫ 1

0

f(x)[g(x) + h(x)] dx =

∫ 1

0

[f(x)g(x) + f(x)h(x)] dx =

∫ 1

0

f(x)g(x) dx+

∫ 1

0

f(x)h(x) dx

so that ⟨f, g + h⟩ = ⟨f, g⟩ + ⟨f, h⟩. Even though it is not clear that this inner product is positive-

definite (we would have to demonstrate that
∫ 1

0
[f(x)]2 dx = 0 if and only if f(x) is the zero function),

it turns out to be the case; however, we will not bother with the details here.

We refer to a vector space V as an inner product space if it admits an inner product ⟨v, w⟩
for every pair of vectors v and w of V. Consequently, each of the real vector spaces Rn, Rn×1, and

C0(R) is a real inner product space. Like in the previous sections, with an arbitrary inner product

on an inner product space V, we will say that a pair of vectors v and w of V are orthogonal (or

perpendicular) (with respect to the underlying inner product) if it holds that ⟨v, w⟩ = 0. We will

also refer to the scalar ∥v∥ =
√

⟨v, v⟩ as the magnitude of the vector v so that ∥v∥2 = ⟨v, v⟩. Like
before, the unit vectors of V are precisely those vectors v satisfying that ∥v∥ = 1.

Proposition 3.4.4. Every nonzero vector v of an inner product space V induces a unit vector 1
∥v∥v.

Proof. Compare the above properties of the inner product with the proof of Corollary 3.1.5.

Example 3.4.5. Consider the real inner product space C0(R) of continuous functions f : R → R
with respect to the inner product ⟨f, g⟩ =

∫ π

0
f(x)g(x) dx. We have that

∥sinx∥2 = ⟨sinx, sinx⟩ =
∫ π

0

sin2 x dx =
1

2

∫ π

0

(1− cos(2x)) dx =
1

2

[
x− 1

2
sin(2x)

]π
0

=
π

2
.

Consequently, the function
√

2
π
sinx is a unit vector of C0(R). Even more, we have that

⟨sinx, cosx⟩ =
∫ π

0

sinx cosx dx =
1

2

∫ π

0

sin(2x) dx =

[
−1

4
cos(2x)

]π
0

= 0,

hence the functions sinx and cos x are orthogonal vectors of C0(R) with respect to the inner product.
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Example 3.4.6. Consider the real inner product space C0(R) of continuous functions f : R → R
with respect to the inner product ⟨f, g⟩ =

∫ 1

−1
f(x)g(x) dx. We have that

∥x∥2 = ⟨x, x⟩ =
∫ 1

−1

x2 dx =

[
x3

3

]1
−1

=
2

3
.

Consequently, the function f(x) =
√

3
2
x is a unit vector of C0(R). Even more, we have that

⟨x, x2⟩ =
∫ 1

−1

x3 dx =

[
x4

4

]1
−1

= 0,

hence the functions x and x2 are orthogonal vectors of C0(R) with respect to the inner product.

Generally, the same argument shows that x2k and x2ℓ+1 are orthogonal for any non-negative integers

k and ℓ: indeed, x2kx2ℓ+1 = x2(k+ℓ)+1 is an odd function, so its integral over the symmetric interval

[−1, 1] is zero. By the same rationale, if f(x)g(x) is odd, then f(x) and g(x) are orthogonal.

Proposition 3.4.7. Consider any vector space V with a positive-definite inner product ⟨−,−⟩.

1.) If u is orthogonal to both v and w, then u and v + w are orthogonal.

2.) If u and v are orthogonal, then u and αv are orthogonal for all scalars α.

3.) (Pythagorean Theorem) If u and v are orthogonal, then ∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof. We note that the same arguments as in Proposition 3.2.6 hold here.

Given any pair of nonzero vectors v and w of an inner product space V, we refer to the scalar

compw(v) =
⟨v, w⟩
⟨w,w⟩

=
1

∥w∥2
⟨v, w⟩

as the component of the vector v along the vector w; using the component of one vector along

another, we may define the projection of the vector v along the vector w by setting

projw(v) = compw(v)w =
⟨v, w⟩
⟨w,w⟩

w.

Given any vectors lying in standard position in real n-space, the projection of any vector X along

a unit vector U has a nice geometric interpretation. Explicitly, by Proposition 3.2.1, we have that

⟨X,U⟩ = X · U = ∥X∥∥U∥ cos(θ) = ∥X∥ cos(θ) for the angle θ between X and U. Even more, we

have that projU(X) = compU(X)U = |X∥ cos(θ)U. Pictorially, this yields the following.

X

U

∥X∥ sin(θ)

projU(X)

θ

Put another way, the projection of X along U can be viewed as the “shadow” X casts along U.
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Example 3.4.8. Consider the real vector space R3 with the inner product ⟨X, Y ⟩ = X ·Y. Observe

that (1, 0, 1) · (1, 2, 3) = (1)(1) + (0)(2) + (1)(3) = 4 and (1, 2, 3) · (1, 2, 3) = 12 + 22 + 32 = 14.

Consequently, we may find the component and the projection of (1, 0, 1) along (1, 2, 3) as follows.

comp(1,2,3)(1, 0, 1) =
(1, 0, 1) · (1, 2, 3)
(1, 2, 3) · (1, 2, 3)

=
4

14
=

2

7
and proj(1,2,3)(1, 0, 1) =

2

7
(1, 2, 3)

Example 3.4.9. Consider the real vector space C0(R) of continuous functions f : R → R with

respect to the inner product ⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx. By definition, we have the following.

compg(f) =
⟨f, g⟩
⟨g, g⟩

=

∫ 1

0
f(x)g(x) dx∫ 1

0
[g(x)]2 dx

Consider the vectors f(x) = ex and g(x) = x. Using integration by parts, we find that

⟨ex, x⟩ =
∫ 1

0

xex dx = [xex]10 −
∫ 1

0

ex dx = e− [ex]10 = e− (e− 1) = 1.

Easier yet is the fact that ⟨x, x⟩ =
∫ 1

0
x2 dx =

[
x3

3

]1
0
= 1

3
. Combined, these observations yield that

compx(e
x) =

⟨ex, x⟩
⟨x, x⟩

=
1
1
3

= 3 and projx(e
x) = compx(e

x)x = 3x.

Our next proposition guarantees the existence of vectors orthogonal to any nonzero vector.

Proposition 3.4.10. Consider any vector space V with a positive-definite inner product ⟨−,−⟩.
Let v and w be any pair of nonzero vectors of V. We have that w and v − projw(v) are orthogonal.

Proof. By definition, the projection of the vector v along the vector w is given by

projw(v) = compw(v)w =
⟨v, w⟩
⟨w,w⟩

w.

Computing the inner product of w and v − projw(v) yields the following.

⟨v − projv(w), w⟩ =
〈
v − ⟨v, w⟩

⟨w,w⟩
w,w

〉
= ⟨v, w⟩ −

〈
⟨v, w⟩
⟨w,w⟩

w,w

〉
= ⟨v, w⟩ − ⟨v, w⟩

⟨w,w⟩
⟨w,w⟩ = 0

We conclude that w and v − projw(v) are orthogonal, as desired.

Even though we will not make explicit use of the following inequalities, their ubiquity in the fields

of complex analysis, functional analysis, mathematical physics, partial differential equations, and

many more areas of applied mathematics necessitate their inclusion in these lecture notes. Often in

the literature, the following is abbreviated as the Schwarz Inequality; however, the inequality was

discovered independently by each of the three eponymous mathematicians in chronological order

according to the appearance of their names in the title, hence we provide the full name.

Theorem 3.4.11 (Cauchy-Bunyakovsky-Schwarz Inequality). Consider any vector space V with a

positive-definite inner product ⟨−,−⟩. We have that ⟨v, w⟩2 ≤ ⟨v, v⟩⟨w,w⟩ for any vectors v, w ∈ V.
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Proof. Certainly, if either v or w is the zero vector, then we have that ⟨v, w⟩ = 0 so that both the

left- and right-hand sides of the desired inequality are zero. We may assume therefore that neither

v nor w is the zero vector. Consider the projection projw(v) = of the vector v along the vector w.

We may write v = (v − projw(v)) + projw(v). By Proposition 3.4.10, it follows that v − projw(v)

is orthogonal to w, hence v − projw(v) is orthogonal to projw(v) by Proposition 3.4.7; thus, by the

Pythagorean Theorem for inner product spaces (cf. the aforementioned proposition), it follows that

∥v∥2 = ∥(v − projw(v)) + projw(v)∥2 = ∥v − projw(v)∥2 + ∥projw(v)∥2.

By hypothesis that ⟨−,−⟩ is a positive-definite inner product, it follows that

∥v∥2 = ∥v − projw(v)∥2 + ∥projw(v)∥2 ≥ ∥projw(v)∥2.

Explicit computation of the scalar ∥projw(v)∥2 yields the following.

∥projw(v)∥2 = ⟨projw(v), projw(v)⟩ =
〈
⟨v, w⟩
⟨w,w⟩

w,
⟨v, w⟩
⟨w,w⟩

w

〉
=

⟨v, w⟩2

⟨w,w⟩2
⟨w,w⟩ = ⟨v, w⟩2

⟨w,w⟩

Consequently, it follows that ⟨v, v⟩ = ∥v∥2 ≥ ∥projw(v)∥2 =
⟨v,w⟩2
⟨w,w⟩ or ⟨v, w⟩2 ≤ ⟨v, v⟩⟨w,w⟩.

Theorem 3.4.12 (Triangle Inequality). Consider any vector space V with a positive-definite inner

product ⟨−,−⟩. We have that ∥v + w∥ ≤ ∥v∥+ ∥w∥ for any vectors v and w of V.

Proof. Expanding the inner product ∥v + w∥2 = ⟨v + w, v + w⟩, we find that

∥v + w∥2 = ⟨v + w, v + w⟩ = ⟨v, v⟩+ 2⟨v, w⟩+ ⟨w,w⟩ ≤ ⟨v, v⟩+ 2|⟨v, w⟩|+ ⟨w,w⟩.

By the Cauchy-Bunyakovsky-Schwarz Inequality, we have that |⟨v, w⟩| ≤
√

⟨v, v⟩
√

⟨w,w⟩ so that

2|⟨v, w⟩| ≤ 2
√

⟨v, v⟩
√

⟨w,w⟩ and ⟨v, v⟩+2|⟨v, w⟩|+ ⟨w,w⟩ ≤ ⟨v, v⟩+
√

⟨v, v⟩
√

⟨w,w⟩+ ⟨w,w⟩. We

conclude that ∥v + w∥2 ≤ ⟨v, v⟩+ 2|⟨v, w⟩|+ ⟨w,w⟩ = (
√

⟨v, v⟩+
√

⟨w,w⟩)2 = (∥v∥+ ∥w∥)2.

3.5 Orthogonal Bases and the Gram-Schmidt Process

We will continue to assume that V is a vector space that admits a positive-definite inner product

⟨−,−⟩. Explicitly, for any pair of vectors v and w in V, we have that ⟨v, w⟩ is a scalar called the

inner product of v and w; a vector space that admits an inner product is called an inner product

space. Common examples of real inner product spaces include real n-space Rn equipped with the

scalar dot product ⟨X, Y ⟩ = X · Y ; the real vector space Rn×1 of real n × 1 column vectors with

the vector dot product ⟨X, Y ⟩ = X tY ; and the real vector space C0(R) of continuous functions

f : R → R with the inner product ⟨f, g⟩ =
∫ b

a
f(x)g(x) dx for any pair of real numbers a < b. We

know from the previous section that an inner product must be commutative and distributive with

respect to vector addition and scalar multiplication, i.e., we must have that ⟨v, w⟩ = ⟨w, v⟩ and

⟨αu + v, w⟩ = α⟨u,w⟩ + ⟨v, w⟩ for all scalars α and all vectors u, v, and w in V. We say that the

vectors v and w are orthogonal if and only if their inner product is zero if and only if ⟨v, w⟩ = 0

(cf. Examples 3.2.2, 2.6.4, 3.4.5, and 3.4.6 for some instances of orthogonal vectors).
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By the Spectral Theorem, every real symmetric n× n matrix induces a basis of Rn×1 consisting

of eigenvectors with the additional property that every pair of distinct eigenvectors are orthogonal.

Explicitly, every real symmetric matrix is orthogonally diagonalizable; however, it is not the case

that the eigenvectors of a real symmetric matrix must be orthogonal: the real symmetric matrix

A =

1 1 1

1 1 1

1 1 1


induces a basis of eigenvectors X1 = (1, 0,−1), X2 = (0, 1,−1), and X3 = (1, 1, 1), but the eigenvec-

tors X1 and X2 are not orthogonal because the dot product X1 ·X2 = (1)(0)+(0)(1)+(−1)(−1) = 1

is nonzero. We must therefore find some method by which to convert these eigenvectors into some

eigenvectors that are orthogonal to one another; this is called the Gram-Schmidt Process.

Example 3.5.1. Consider the vectors X1 = (1, 0,−1), X2 = (0, 1,−1), and X3 = (1, 1, 1) of R3. We

will perform the Gram-Schmidt Process to product three unit vectors that are orthogonal to one

another. We begin with the vector X1 = (1, 0,−1) of magnitude ∥X∥ =
√

12 + 02 + (−1)2 =
√
2.

By Corollary 3.1.5, it follows that U1 =
1√
2
X1 is a unit vector; even more importantly, the vector U1

remains an eigenvector of A corresponding to the eigenvalue 0 because AU1 = O = 0 ·U1. We must

next produce a unit vector U2 that is orthogonal to U1. Crucially, Proposition 3.4.10 guarantees

that the vector X2 − projX1
(X2) is orthogonal to X1; moreover, it satisfies that

A(X2 − projX1
(X2)) = AX2 − A projX1

(X2) = O − A

(
X1 ·X2

X1 ·X1

X2

)
=

X1 ·X2

X1 ·X1

AX2 = O

so that X2 − projX1
(X2) is an eigenvector of A corresponding to the eigenvalue 0. Consequently,

U2 =
1

∥X2 − projX1
(X2)∥

(X2 − projX1
(X2))

is a unit vector orthogonal to U1 because X1 and X2 − projX1
(X2) are orthogonal. Even though

the closed form expression of this vector is less than ideal (because the closed form expression of

X2 − projX1
(X2) and its magnitude are quite awful numerically), we provide the details as follows.

X2 − projX1
(X2) = X2 −

X1 ·X2

X1 ·X1

X1 = (0, 1,−1)− 1

2
(1, 0,−1) =

(
−1

2
, 1,−1

2

)

∥X2 − projX1
(X2)∥ =

√(
−1

2

)2
+ 12 +

(
−1

2

)2
=

√
3

2

Last, we construct a unit vector U3 that is orthogonal to both of the vectors U1 and U2. Considering

that X1 ·X3 = 0 and X2 ·X3 = 0, it suffices to take U3 =
1

∥X3∥X3 =
1√
3
(1, 1, 1).

Generally, we will refer to a basis v1, . . . , vn of a vector space V as orthogonal if it holds that

⟨vi, vj⟩ = 0 for all integers 1 ≤ i < j ≤ n. Even more, if the vectors v1, . . . , vn are all unit vectors

(i.e., we have that ∥vi∥ = 1 for each integer 1 ≤ i ≤ n), then we say that the basis vectors v1, . . . , vn
form an orthonormal basis. We are already familiar with examples of orthonormal bases.
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Example 3.5.2. Consider the standard basis of Rn×1 given by the n×1 column vectors E1, . . . , En

such that Ei consists of one in the ith row and zeros elsewhere. By definition, we have that

∥Ei∥ =
√
02 + · · ·+ 02 + 12 + 02 + · · ·+ 02 = 1,

hence Ei is a unit vector. Even more, for any integers 1 ≤ i < j ≤ n, we have that

Ei · Ej = (0)(0) + · · ·+ (1)(0) + (0)(0) + · · ·+ (0)(1) + (0)(0) + · · ·+ (0)(0) = 0,

hence Ei and Ej are orthogonal. We conclude that E1, . . . , En form an orthonormal basis for Rn×1.

Example 3.5.3. Consider the real vector space C0(R) of functions f : R → R with the positive-

definite inner product ⟨f, g⟩ =
∫ π

0
f(x)g(x) dx. Consider the vector subspace W of C0(R) spanned

by the linearly independent vectors sinx and cosx of C0(R). By Example 3.4.5, we have that sinx

and cosx are orthogonal, hence in order to find an orthonormal basis for the vector space spanned

by sinx and cosx, it suffices to compute ∥sinx∥ and ∥cosx∥. By the same example, we know that√
2
π
sinx is a unit vector. Likewise, we may compute the magnitude of cos x

∥cosx∥2 = ⟨cosx, cosx⟩ =
∫ π

0

cos2 x dx =
1

2

∫ π

0

(1 + cos(2x)) =
1

2

[
x+

1

2
sin(2x)

]π
0

=
π

2

so that
√

2
π
cosx is a unit vector and

{√
2
π
sinx,

√
2
π
cosx

}
is an orthonormal basis for W.

Every nonzero finite-dimensional inner product space admits an orthonormal basis as follows.

Theorem 3.5.4 (Gram-Schmidt Process). Every nonzero finite-dimensional vector space with a

positive-definite inner product ⟨−,−⟩ admits an orthonormal basis with respect to ⟨−,−⟩.

Proof. By Theorem 1.8.10, there exist nonzero vectors v1, . . . , vn that constitute a basis for V. We

may successively replace each basis vector vi with a nonzero vector wi that is orthogonal to the

vectors w1, . . . , wi−1 for each integer 2 ≤ i ≤ n to obtain an orthogonal basis as follows.

wi = vi −
i−1∑
j=1

cijwj = vi −
i−1∑
j=1

⟨vi, wj⟩
⟨wj, wj⟩

wj = vi −
⟨vi, w1⟩
⟨w1, w1⟩

w1 − · · · − ⟨vi, wi−1⟩
⟨wi−1, wi−1⟩

wi−1.

Explicitly, we have that w1 = v1 because the summation is empty for i = 1, and we have that

w2 = v2 −
⟨v2, w1⟩
⟨w1, w1⟩

w1 and w3 = v3 −
⟨v3, w1⟩
⟨w1, w1⟩

w1 −
⟨v3, w2⟩
⟨w2, w2⟩

w2.

Each of the nonzero vectors wi is orthogonal to the vectors wi, . . . , wi−1 for each integer 2 ≤ i ≤ n

by construction. Crucially, we note that for each integer 1 ≤ j ≤ i− 1, we have that

⟨vi, wj⟩ − cij⟨wj, wj⟩ = ⟨vi, wj⟩ −
⟨vi, wj⟩
⟨wj, wj⟩

⟨wj, wj⟩ = ⟨vi, wj⟩ − ⟨vi, wj⟩ = 0.

Consequently, it suffices to prove that w1 and w2 are orthogonal: indeed, we have that

⟨w2, w1⟩ = ⟨v2 − c21w1, w1⟩ = ⟨v2, w1⟩ − c21⟨w1, w1⟩ = 0.



3.5. ORTHOGONAL BASES AND THE GRAM-SCHMIDT PROCESS 137

Even more, it follows that w3 is orthogonal to w1 and w2 by construction of w3: we have that

⟨w3, w1⟩ = ⟨v3 − c31w1 − c32w2, w1⟩ = ⟨v3, w1⟩ − c31⟨w1, w1⟩ − c32⟨w2, w1⟩ = 0 and

⟨w3, w2⟩ = ⟨v3 − c31w1 − c32w2, w2⟩ = ⟨v3, w2⟩ − c31⟨w1, w2⟩ − c32⟨w2, w2⟩ = 0.

Continuing in this manner reveals that wi is orthogonal to w1, . . . , wi−1 for each integer 2 ≤ i ≤ n,

as desired. Each of the basis vectors vi can be written as vi = ci1w1+ · · ·+ ci,i−1wi−1, hence we find

that V = span{v1, . . . , vn} = span{w1, . . . , wn}; thus, the orthogonal vectors w1, . . . , wn must form

an orthogonal basis for V by the third part of Theorem 1.8.10. Last, we obtain an orthonormal basis

for V by replacing each of the vectors wi with the unit vector ui =
1

∥wi∥wi by Corollary 3.1.5.

Example 3.5.5. Let us carry out the Gram-Schmidt Process to find an orthonormal basis for the

vector subspaceW of R3 spanned by the linearly independent vectorsX = (1, 2,−1), Y = (−1, 3, 2),

and Z = (2, 4, 3). We may choose any of the three vectors as our initial vector to construct the

basis; we pick X1 = X arbitrarily; then, we convert Y into a vector orthogonal to X1 as follows.

X2 = Y − ⟨Y,X1⟩
⟨X1, X1⟩

X1 = (−1, 3, 2)− (−1, 3, 2) · (1, 2,−1)

(1, 2,−1) · (1, 2,−1)
(1, 2,−1) = (−1, 3, 2)− 3

6
(1, 2,−1)

Carrying out the simplification and the subtraction yields that X2 =
(
−3

2
, 2, 5

2

)
. Likewise, we may

convert Z into a vector orthogonal to both X1 and X2 as follows.

X3 = Z − ⟨Z,X1⟩
⟨X1, X1⟩

X1 −
⟨Z,X2⟩
⟨X2, X2⟩

X2

= (2, 4, 3)− (2, 4, 3) · (1, 2,−1)

6
(1, 2,−1)−

(2, 4, 3) ·
(
−3

2
, 2, 5

2

)(
−3

2
, 2, 5

2

)
·
(
−3

2
, 2, 5

2

)(−3

2
, 2,

5

2

)

= (2, 4, 3)− 7

6
(1, 2,−1)−

25
2
25
2

(
−3

2
, 2,

5

2

)

= (2, 4, 3)−
(
7

6
,
7

3
,−7

6

)
−

(
−3

2
, 2,

5

2

)
=

(
7

3
,−1

3
,
5

3

)
We have therefore obtained an orthogonal basis. Last, we obtain an orthonormal basis by dividing

each of these basis vectors by its magnitude; the orthonormal basis vectors are

U1 =
1√
6
(1, 2,−1) and U2 =

√
2

5

(
−3

2
, 2,

5

2

)
and U3 =

√
3

5

(
7

3
,−1

3
,
5

3

)
.

Example 3.5.6. Let us carry out the Gram-Schmidt Process to find an orthonormal basis for the

vector subspace W of C0(R) spanned by the linearly independent vectors t and t2 with respect to

the inner product ⟨f, g⟩ =
∫ 1

0
f(t)g(t) dt. We may choose t or t2 as our initial vector to construct the

basis; we pick f1(t) = t arbitrarily; then, we convert t2 into a vector orthogonal to f1(t) as follows.

f2(t) = t2 − ⟨t2, f1(t)⟩
⟨f1(t), f1(t)⟩

f1(t) = t2 − ⟨t2, t⟩
⟨t, t⟩

t = t2 −
∫ 1

0
t3 dt∫ 1

0
t2 dt

t =
1
4
1
3

t = t2 − 3

4
t
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Consequently, the vectors t and t2 − 3
4
t form an orthogonal basis for W. Last, we obtain an or-

thonormal basis as 1
∥t∥t and

1
∥t2− 3

4
t∥(t

2 − 3
4
t); thus, the orthonormal basis vectors are

u1(t) =
1∫ 1

0
t2 dt

t = 3t and u2(t) =
1∫ 1

0

(
t2 − 3

4
t
)2

dt

(
t2 − 3

4
t

)
= 80

(
t2 − 3

4
t

)
.

We turn our attention next to the general theory of orthogonal vectors of an arbitrary inner

product space. One of the premier reasons to work with orthogonal vectors is the following.

Proposition 3.5.7. Consider a vector space V with a positive-definite inner product ⟨−,−⟩. Given

any nonzero vectors v1, . . . , vn of V such that vi and vj are orthogonal for all integers 1 ≤ i < j ≤ n,

if there exist scalars α1, . . . , αn such that α1v1 + · · ·+αnvn = OV , we must have α1 = · · · = αn = 0.

Consequently, nonzero orthogonal vectors of an inner product space are linearly independent.

Proof. Consider any expression α1v1 + · · · + αnvn = O of linear dependence among a collection

v1, . . . , vn of nonzero mutually orthogonal vectors. Expanding the inner product, we have that

0 = ⟨vi, O⟩ = ⟨vi, α1v1 + · · ·+ αnvn⟩ = α1⟨vi, v1⟩+ · · ·+ αn⟨vi, vn⟩.

Considering that the inner products ⟨vi, vj⟩ = 0 for each integer j ̸= i by assumption, we conclude

that αi⟨vi, vi⟩ = 0. By hypothesis that vi is nonzero, we can divide by the nonzero scalar ⟨vi, vi⟩ to
find that αi = 0. Continuing this for each integer 1 ≤ i ≤ n yields that α1 = · · · = αn = 0.

Even more, if we restrict our attention to orthonormal vectors, we have the following.

Corollary 3.5.8. Consider any vector space V with a positive-definite inner product ⟨−,−⟩. Given

any unit vectors u1, . . . , un of V such that ui and uj are orthogonal for all integers 1 ≤ i < j ≤ n,

the coefficients of any vector v = α1u1 + · · ·+ αnun are unique. Particularly, we have αi = ⟨v, ui⟩.

Proof. Consider any vector of V of the form v = α1u1 + · · · + αnun. By the proof of Proposition

3.5.7, we have that ⟨v, ui⟩ = αi⟨ui, ui⟩ = αi by assumption that ui is a unit vector.

Combined, the previous proposition and corollary assert that the matrix representation of a

linear transformation T : V → V with respect to an orthonormal basis u1, . . . , un of an inner

product space is simply the matrix whose (i, j)th entry is the inner product ⟨T (ui), uj⟩. We will

return to this notion in the next section. We conclude our present discussion with an important

decomposition theorem regarding finite-dimensional inner product spaces. We will say that a vector

subspace W of an inner product space V is orthogonal to a vector subspace U of V if it is the

case that for every vector w of W and every vector u of U, we have that ⟨u,w⟩ = 0. Before we state

the next theorem, we must recall also that the sum of the vector subspaces U and W is the vector

subspace U +W = {u+w | u ∈ U and w ∈ W} of V ; if U ∩W = {O}, we write U +W = U ⊕W.

Theorem 3.5.9. Consider any finite-dimensional vector space V with a positive-definite inner

product ⟨−,−⟩. Given any vector subspace W of V, there exists a unique vector subspace W⊥ of V

that is orthogonal to W and satisfies that V = W ⊕W⊥. We refer to the vector space W⊥ as the

orthogonal complement of W (and vice-versa). Put another way, every finite-dimensional inner

product space can be decomposed as the direct sum of any subspace and its orthogonal complement.
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Proof. Certainly, the orthogonal complement of the zero subspace is V itself, hence we may assume

that W is a nonzero subspace of V. By Theorem 1.8.10, for any basis w1, . . . , wk of W, there exist

nonzero vectors vk+1, . . . , vn such that w1, . . . , wk, vk+1, . . . , vn constitute a basis for V. By the Gram-

Schmidt Process, we may obtain an orthogonal basis u1, . . . , uk, uk+1, . . . , un for V satisfying that

W = span{w1, . . . , wk} = span{u1, . . . , uk} and W⊥ = span{uk+1, . . . , un}. Even more, every vector

v of V can be written as v = α1u1+ · · ·+αkvk+αk+1uk+1+ · · ·+αnun so that V = W +W⊥ because

the vector α1u1 + · · ·+αkuk lies in W, and the vector αk+1uk+1 + · · ·+αnun lies in W⊥. Given any

vector v ∈ W ∩W⊥, there exist scalars α1, . . . , αk and αk+1, . . . , αn such that v = α1u1+ · · ·+αkvk
and v = αk+1uk+1 + · · ·+ αnun. By taking the inner product of v with itself, we obtain

⟨v, v⟩ = ⟨α1u1 + · · ·+ αkuk, αk+1uk+1, . . . , αnun⟩ = α1αk+1⟨u1, uk+1⟩+ · · ·+ αkαn⟨uk, un⟩.

Each of the inner products ⟨ui, uj⟩ is zero for all integers 1 ≤ i ≤ k and k + 1 ≤ j ≤ n by

construction, hence we conclude that ⟨v, v⟩ = 0 so that v = OV by definition of a positive-definite

inner product. We conclude therefore that V = W ⊕W⊥. Last, we assert the uniqueness of W⊥.

We will demonstrate that every vector of V that is orthogonal to every vector of W lies in W⊥;

therefore, any vector subspace of V that is orthogonal to W must be contained in W⊥. Every

vector of V can be written as v = w1 +w2 for some vectors w1 ∈ W and w2 ∈ W⊥. Given that v is

orthogonal to every vector of W, we must have that 0 = ⟨v, w1⟩ = ⟨w1, w1⟩+ ⟨w1, w2⟩ = ⟨w1, w1⟩ so
that w1 is the zero vector, and the vector v = w2 lies in W⊥, as desired.

Corollary 3.5.10. Consider any finite-dimensional vector space V with a positive-definite inner

product ⟨−,−⟩. Given any vector subspace W of V, we have that dim(V ) = dim(W ) + dim(W⊥).

Example 3.5.11. Let us determine the orthogonal complement of W = span{(1, 0, 1), (1, 2,−2)}
in the vector space R3. By the proof of Theorem 3.5.9, we must first extended the basis of W to

a basis of V. Every vector of W is of the form (a + b, 2b, a − 2b) = a(1, 0, 1) + b(1, 2,−2) for some

real numbers a and b, hence it suffices to choose a vector that is not of this form. Consequently,

if we want the second coordinate of our vector to be 0, then in order for this vector to lie in W,

it must be of the form (a, 0, a). We conclude therefore that (1, 0,−1) does not lie in W so that

(1, 0, 1), (1, 2,−2), and (1, 0,−1) form a basis for R3. By the Gram-Schmidt Process, we find that

(1, 2,−2)− (1, 2,−2) · (1, 0, 1)
(1, 0, 1) · (1, 0, 1)

(1, 0, 1) = (1, 2,−2) +
1

2
(1, 0, 1) =

(
3

2
, 2,−3

2

)
is orthogonal to (1, 0, 1); it is also orthogonal to (1, 0,−1) by inspection, so we have produced an

orthogonal basis for V. By Corollary 3.5.10, we have that dimW⊥ = dim(R3)−dim(W ) = 3−2 = 1,

hence we conclude that W⊥ = span{(1, 0,−1)} is the orthogonal complement of W.

Example 3.5.12. We conclude this section with an example to determine the orthogonal comple-

ment of W = span{(1, 1, 1)} in the vector space R3 in a different manner than the previous example.

By definition, we seek all vectors (x, y, z) of R3 satisfying that x + y + z = (x, y, z) · (1, 1, 1) = 0.

Clearly, we have that (1,−1, 0) and (1, 0,−1) satisfy the aforementioned equation, hence they are

orthogonal to (1, 1, 1). Even more, they are linearly independent, hence they span a vector space of

dimension two. By Corollary 3.5.10, we need only demonstrate that the vectors (a, a, a) = a(1, 1, 1)

and (b + c,−b,−c) = b(1,−1, 0) + c(1, 0,−1) are orthogonal. But this is clear by taking the dot

product: indeed, we have that (a, a, a) · (b+ c,−b,−c) = a(b+ c)− ab− ac = ab+ ac− ab− ac = 0.
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3.6 Linear Functionals

Quite sneakily, we have yet to address the meaning of the scalars with which we have worked since

the very first chapter of these lecture notes. We must at last deal with this situation. We say

that a nonempty set k is a field if every pair of elements α and β of k can be added, subtracted,

multiplied, and (if either α or β is nonzero) divided. Explicitly, if α and β are nonzero elements

of k, then there must exist elements −β and β−1 of k such that β + (−β) = 0, ββ−1 = 1, and

α+ β, α− β, αβ, and αβ−1 are all elements of k. We have throughout these notes dealt exclusively

with the field R of real numbers, but there are other fields such as the rational numbers Q or the

complex numbers C that are of interest in linear algebra. We refer to a vector space V with scalars

in the field k as a k-vector space. We have simply said “real vector space” to mean an R-vector
space. We say that a linear transformation f : V → k is a linear functional. Explicitly, a linear

functional is a function f : V → k from a vector space V to its field of scalars k satisfying that

1.) f(v + w) = f(v) + f(w) for all vectors v and w of V and

2.) f(αv) = αf(v) for all scalars α of k and all vectors v of V.

Example 3.6.1. Every line through the origin in the Cartesian plane R2 defines a linear functional

on R. Explicitly, for any real number m, the linear function f : R → R defined by f(x) = mx is

a linear functional because it satisfies that f(x + y) = m(x + y) = mx + my = f(x) + f(y) and

f(αx) = m(αx) = α(mx) = αf(x) for all real numbers α, x, and y. Conversely, if f : R → R
is a linear functional, then f(x) = f(1)x for all real numbers x by the second property of linear

functionals above, hence f(x) is a line of slope f(1) and y-intercept 0. Consequently, the linear

functionals on the real vector space R are precisely the linear functions passing through the origin.

Example 3.6.2. We note that the function f : R3 → R defined by f(x, y, z) = x+ y+ z is a linear

functional: indeed, we have that f(αx, αy, αz) = αx + αy + αz = α(x + y + z) = αf(x, y, z) and

f(x1 + x2, y1 + y2, z1 + z2) = (x1 + x2) + (y1 + y2) + (z1 + z2) = (x1 + y1 + z1) + (x2 + y2 + z2) or

f(x1 + x2, y1 + y2, z1 + z2) = f(x1, y1, z1) + f(x2, y2, z2) for all real numbers α, x1, y1, z1, x2, y2, z2.

Example 3.6.3. Consider the function E : F (R,R) → R defined by E(f(x)) = f(0) on the real

vector space F (R,R) of functions f : R → R. We can easily verify that E is a linear functional on

F (R,R) because it is clear that E(f(x) + g(x)) = E((f + g)(x)) = (f + g)(0) = f(0) + g(0) and

E(αf(x)) = αf(0) = αE(f(x)) for all real numbers α and all real functions f(x) and g(x).

Example 3.6.4. We define the trace an n× n matrix as the sum of its diagonal components.

trace



a11 a12 · · · a1n
a21 a22 · · · ann
...

...
. . .

...

an1 an2 · · · ann


 = a11 + a22 + · · ·+ ann

We claim that the function f : Rn×n → R defined by f(A) = trace(A) is a linear functional. Given

any pair of real n × n matrices A and B, the diagonal components of A + B are by definition the

sums of the diagonal components of A and B. Explicitly, we have that (A+B)ij = Aij +Bij for all

integers 1 ≤ i, j ≤ n. Consequently, we have that trace(A+B) = (A+B)11 + · · ·+ (A+B)nn and

trace(A) + trace(B) = (A11 + · · ·+ Ann) + (B11 + · · ·+Bnn) = (A11 +B11) + · · ·+ (Ann +Bnn).
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We conclude that f(A+B) = trace(A+B) = trace(A)+trace(B) = f(A)+f(B). Even more, if α is

any scalar, then the diagonal components of αA are by definition α times the diagonal components

of A. Explicitly, we have that (αA)ij = α(Aij) for all integers 1 ≤ i, j ≤ n so that

trace(αA) = (αA)11 + · · · (αA)nn = α(A11) + · · ·+ α(Ann) = α(A11 + · · ·+ Ann) = α trace(A).

By the above displayed equation, it follows that f(αA) = trace(αA) = α trace(A) = αf(A).

Example 3.6.5. Consider the linear functional f : R3 → R defined by f(1, 0, 0) = 1, f(0, 1, 0) =

−1, and f(0, 0, 1) = 2. By Proposition 1.11.17, every linear transformation is uniquely determined

by how it acts on a basis, hence the information provided is enough to uniquely determined f(x, y, z)

for all real numbers x, y, and z. Explicitly, we must have that f(x, y, z) = x− y + 2z because

f(x, y, z) = f(1, 0, 0)x+ f(0, 1, 0)y + f(0, 0, 1)z = x− y + 2z.

Each of the real numbers x, y, and z can be factored out from f by the second property of a linear

functional above; the first property above yields that f(x, y, z) = f(x, 0, 0) + f(0, y, 0) + f(0, 0, z).

We refer to the collection V ∗ = {f : V → k | f is linear} of all linear functionals from a k-vector

space V to its field k of scalars as the dual of V (or the dual space of V ). Crucially, we note that

V ∗ is a k-vector space with respect to function addition and pointwise scalar multiplication.

Proposition 3.6.6. Given any k-vector space V, the dual space V ∗ is a k-vector space with respect

to function addition (f + g)(v) = f(v) + g(v) and pointwise scalar multiplication (αf)(v) = αf(v).

Proof. Considering that V and k are both k-vector spaces, this holds by Proposition 1.10.9

Clearly, it is advantageous to view the dual space V ∗ of V as a vector space over the same field

of scalars because this vantage point affords us all of the tools that we developed in Chapter 1 to

study V ∗. We put these techniques to immediate use in the following fundamental proposition.

Proposition 3.6.7. Consider any finite-dimensional k-vector space V. Given any basis v1, . . . , vn
of V, there exists a unique basis f1, . . . , fn of V ∗ called the dual basis such that fi(vj) = δij is the

Kronecker delta. Even more, any linear functional f on V satisfies that f = f(v1)f1+ · · ·+f(vn)fn.

Proof. Every vector of V can be written as v = α1v1+ · · ·+αnvn for some unique scalars α1, . . . , αn

by assumption that v1, . . . , vn constitute a basis for V. Considering that every linear functional

f : V → k must satisfy that f(v) = f(α1v1) + · · · + f(αnvn) = α1f(v1) + · · · + αnf(vn), it follows

that every element f of V ∗ is uniquely determined by f(v1), . . . , f(vn) (cf. Proposition 1.11.17).

Consequently, we may define unique linear functionals f1, . . . , fn of V ∗ by declaring that fi(vj) = δij
and extending linearly to determine the image of fi on any vector of V. Explicitly, we must have

that fi(α1v1 + · · · + αnvn) = α1fi(v1) + · · · + αnfi(vn) = αi because fi(vj) = 0 for all indices

i ̸= j and fi(vi) = 1. We must next demonstrate that f1, . . . , fn span V ∗ and that they are linearly

independent. We will assume first that there exist scalars α1, . . . , αn such that α1f1 + · · ·+ αnfn is

the zero functional. Consequently, for each integer 1 ≤ i ≤ n, we have that

0 = (α1f1 + · · ·+ αnfn)(vi) = α1f1(vi) + · · ·+ αnfn(vi) = αi
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so that f1, . . . , fn are linearly independent. Given any linear functional f : V → k, we have already

seen that f(v) = α1f(v1) + · · ·+ αnf(vn) and αi = fi(α1v1 + · · ·+ αnvn) = fi(v). Combined, these

two formative observations yield the following identity for all vectors v of V.

f(v) = α1f(v1) + · · ·+ αnf(vn) = f(v1)f1(v) + · · ·+ f(vn)fn(v) = (f(v1)f1 + · · ·+ f(vn)fn)(v).

We conclude that f = f(v1)f1 + · · ·+ f(vn)fn so that the linear functionals f1, . . . , fn span V ∗.

Corollary 3.6.8. Given any finite-dimensional k-vector space V, we have that dim(V ∗) = dim(V ).

Corollary 3.6.9. Given any finite-dimensional k-vector space V, every vector of V can be written

as v = f1(v)v1 + · · ·+ fn(v)vn for any basis v1, . . . , vn of V and the dual basis f1, . . . , fn of V ∗.

Proposition 3.6.10. Every finite-dimensional k-vector space is isomorphic to its dual.

Proof. We must provide a vector space isomorphism T : V → V ∗. Explicitly, we must construct a

linear transformation T : V → V ∗ that is both injective and surjective. Given any basis v1, . . . , vn
of V, consider the linear transformation T : V → V ∗ uniquely determined by T (vi) = fi for the dual

basis f1, . . . , fn of V ∗. By Proposition 1.11.6, in order to demonstrate that T is injective, it suffices

to prove that ker(T ) = {OV }. Consider any vector v of V such that T (v) is the zero functional.

We may write v = α1v1 + · · ·+ αnvn for some unique scalars α1, . . . , αn. By definition of the linear

transformation T, we have that T (α1v1+ · · ·+αnvn) = α1T (v1)+ · · ·+αnT (vn) = α1f1+ · · ·+αnfn.

Considering that f1, . . . , fn are linearly independent and T (v) is the zero functional, we must have

that α1 = · · · = αn = 0 so that v = OV . Every linear functional f : V → k can be written uniquely

as f = f(v1)f1 + · · ·+ f(vn)fn, hence the vector v = f(v1)v1 + · · ·+ f(vn)vn of V satisfies that

f = f(v1)f1 + · · ·+ f(vn)fn = f(v1)T (v1) + · · ·+ f(vn)T (vn) = T (f(v1)v1 + · · ·+ f(vn)vn) = T (v).

We conclude that T : V → V ∗ is injective and surjective, so it is a vector space isomorphism.

Example 3.6.11. Consider the real vector space R2 consisting of points in the Cartesian plane.

We note that the points (1, 1) and (1,−2) form a basis for R2 because they are linearly dependent:

indeed, if there exist real numbers a and b for which (a + b, a − 2b) = a(1, 1) + b(1,−2) = (0, 0),

then a+ b = 0 and a− 2b = 0 together yield that −b = a = 2b or b = 0 so that a = 0. We will find

a basis of (R2)∗ that is dual to the basis (1, 1) and (1,−2) of R2. By Proposition 3.6.7, we must

furnish linear functionals fi : R2 → R defined by fi(vj) = δij for each pair of integers 1 ≤ i, j ≤ 2.

f1(1, 1) = 1 f1(1,−2) = 0

f2(1, 1) = 0 f2(1,−2) = 1

Eventually, we wish to determine f1(x, y) and f2(x, y). Considering that each of these functions is

linear, we have that f1(x, y) = f1(x, 0)+ f1(0, y) = f1(1, 0)x+ f1(0, 1)y, so it suffices to find f1(1, 0)

and f1(0, 1); the same rationale shows that f2(x, y) = f2(x, 0) + f2(0, y) = f2(1, 0)x+ f2(0, 1)y. We

must write the vectors (1, 0) and (0, 1) in terms of the basis vectors (1, 1) and (1,−2). Explicitly, we

have that (1, 0) = a(1, 1)+ b(1,−2) = (a+ b, a− 2b) and (0, 1) = c(1, 1)+ d(1,−2) = (c+ d, c− 2d).
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By solving the linear equations a + b = 1 and a− 2b = 0, we find that a = 2
3
and b = 1

3
. Likewise,

by solving the linear equations c+ d = 0 and c− 2d = 1, we find that c = 1
3
and d = −1

3
.

(1, 0) =
2

3
(1, 1) +

1

3
(1,−2)

(0, 1) =
1

3
(1, 1)− 1

3
(1,−2)

Considering that f1(1, 1) = 1 and f1(1,−2) = 0, it follows that f1(1, 0) =
2
3
and f1(0, 1) =

1
3
. Even

more, we have that f2(1, 1) =
1
3
and f2(0, 1) = −1

3
so that f1(x, y) =

2
3
x+ 1

3
y and f2(x, y) =

1
3
x− 1

3
y.

Example 3.6.12. Consider the real vector space R3 consisting of points in real 3-space. By Algo-

rithm 1.7.9, the points (1, 0,−1), (1, 1, 1), and (2, 2, 0) of R3 are linearly independent because the

real 3× 3 matrix whose columns are these three vectors has three pivots as follows. 1 1 2

0 1 2

−1 1 0

 R3+R1 7→R3∼

1 1 2

0 1 2

0 2 2

 R3−2R2 7→R3∼

1 1 2

0 1 2

0 0 −2


By Proposition 3.6.7, dual basis of (R3)∗ corresponding to (1, 0,−1), (1, 1, 1), (2, 2, 0) consists of

the linear functionals fi : R3 → R defined by fi(vj) = δij for each pair of integers 1 ≤ i, j ≤ 3.

f1(1, 0,−1) = 1 f1(1, 1, 1) = 0 f1(2, 2, 0) = 0

f2(1, 0,−1) = 0 f2(1, 1, 1) = 1 f2(2, 2, 0) = 0

f3(1, 0,−1) = 0 f3(1, 1, 1) = 0 f3(2, 2, 0) = 1

By taking inspiration from the exposition of Example 3.6.11, we may find real numbers such that

(1, 0, 0) = a(1, 0,−1) + b(1, 1, 1) + c(2, 2, 0) = (a+ b+ 2c, b+ 2c,−a+ b),

(0, 1, 0) = d(1, 0,−1) + e(1, 1, 1) + f(2, 2, 0) = (d+ e+ 2f, e+ 2f,−d+ e), and

(0, 0, 1) = g(1, 0,−1) + h(1, 1, 1) + i(2, 2, 0) = (g + h+ 2i, h+ 2i,−g + h).

We leave it as an exercise for the reader to verify that a = b = f = h = 1, c = i = −1
2
, d = e = −1,

and g = 0. Consequently, we may write (1, 0, 0), (0, 1, 0), and (0, 0, 1) as follows.

(1, 0, 0) = (1, 0,−1) + (1, 1, 1)− 1

2
(2, 2, 0)

(0, 1, 0) = −(1, 0,−1)− (1, 1, 1) + (2, 2, 0)

(0, 0, 1) = 0(1, 0,−1) + (1, 1, 1)− 1

2
(2, 2, 0)

Example 3.6.11 implies that the coefficients of x, y, and z in f1(x, y, z) can be read from the first

column above; the coefficients of x, y, and z in f2(x, y, z) can be read from the second column
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above; and the coefficients of x, y, and z in f3(x, y, z) can be read from the third column above. We

conclude that f1(x, y, z) = x− y, f2(x, y, z) = x− y + z, and f3(x, y, z) = −1
2
x+ y − 1

2
z.

Even more, the linear functional f : R3 → R defined by f(x, y, z) = 2x − y + z satisfies that

f(1, 0,−1) = 1, f(1, 1, 1) = 2, and f(2, 2, 0) = 2 so that f = f1 + 2f2 + 2f3 by Proposition 3.6.7.

Last, we will express the vectors (2,−2, 1) and (0,−2,−3) of R3 in terms of the basis vectors

(1, 0,−1), (1, 1, 1), and (2, 2, 0) using only the dual basis f1, f2, f3 of (R3)∗. We note the following.

f1(2,−2, 1) = 2− (−2) = 4 f1(0,−2,−3) = (0)− (−2) = 2

f2(2,−2, 1) = 2− (−2) + 1 = 5 f2(0,−2,−3) = (0)− (−2) + (−3) = −1

f3(2,−2, 1) = −1

2
(2) + (−2)− 1

2
(1) = −7

2
f3(0,−2,−3) = −1

2
(0) + (−2)− 1

2
(−3) = −1

2

(2,−2, 1) = 4(1, 0,−1) + 5(1, 1, 1)− 7

2
(2, 2, 0) (0,−2,−3) = 2(1, 0,−1)− (1, 1, 1)− 1

2
(2, 2, 0)

Consequently, linear functionals are quite useful — especially the dual basis for a vector space.

Entire fields of mathematics are devoted to the study of linear functionals that satisfy additional

analytic or geometric properties. Explicitly, in mathematical analysis, much of the work in the

areas of functional analysis and numerical analysis takes place in a suitable vector space for such

computations (such as a Hilbert space or a Banach space). Even though we will not discuss these

concepts, we conclude this section with an astonishing result that states that over a positive-definite

inner product space, every linear functional is simply the inner product with a fixed vector.

Theorem 3.6.13. Consider any finite-dimensional k-vector space V with a positive-definite inner

product ⟨−,−⟩. Given any linear functional f : V → k, there exists a unique vector w ∈ V such that

f(v) = ⟨v, w⟩ for all vectors v ∈ V. Put another way, every linear functional on V is determined

uniquely by the inner products of any basis vectors of V with some fixed vector of V.

Proof. Choose an orthonormal basis u1, . . . , un for V by the Gram-Schmidt Process. Consider the

vector w = f(u1)u1 + · · · + f(un)un. We claim that fw : V → k defined by fw(v) = ⟨v, w⟩ is a

linear functional. Explicitly, by the first and second properties of an inner product, for any vectors

u and v of V, we have that fw(u+ v) = ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ = fw(u)+ fw(v). Even more, by

the third property of an inner product, we have that fw(αv) = ⟨αv, w⟩ = α⟨v, w = αfw(v) for any

scalar α and any vector v. We conclude that fw is a linear functional, hence it suffices to prove that

f(ui) = fw(ui) for all basis vectors ui by Proposition 1.11.17. By definition of fw, we have that

fw(ui) = ⟨ui, w⟩ = ⟨ui, f(u1)u1 + · · ·+ f(un)un⟩ = f(u1)⟨ui, u1⟩+ · · ·+ f(un)⟨ui, un⟩ = f(ui)

by assumption that u1, . . . , un are orthonormal. Explicitly, we have that ⟨ui, uj⟩ = 0 for all indices

i ̸= j and ⟨ui, ui⟩ = 1. Last, we prove the uniqueness of w: if ⟨v, w⟩ = ⟨v, u⟩ for all vectors of V for

some vector u, then ⟨w − u,w⟩ = ⟨w − u, u⟩ yields that ⟨w − u,w − u⟩ = 0 so that w − u = O.

Example 3.6.14. Consider the orthonormal basis (1, 0, 0), (0, 1, 0), (0, 0, 1) of R3. Observe that for

the linear functional f : R3 → R of Example 3.6.5, we have that f(1, 0, 0) = 1, f(0, 1, 0) = −1, and
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f(0, 0, 1) = 2, hence w = (1, 0, 0)− (0, 1, 0) + 2(0, 0, 1) = (1,−1, 2) determines the linear functional

f as an inner product. We note that f(x, y, z) = x− y + 2z = (x, y, z) · (1,−1, 2), as desired.

Example 3.6.15. Consider the orthonormal basis consisting of 3t and 80(t2− 3
4
t) for the subspace

span{t, t2} of C0(R) with respect to the inner product ⟨f, g⟩ =
∫ 1

0
f(t)g(t) dt (cf. Example 3.5.6).

Observe that the linear functional E : C0(R) → R defined by E(f(t)) = f(1) satisfies that E(3t) = 3

and E(80(t2− 3
4
t)) = 20, hence f(t) = 3(3t)+20(80(t2− 3

4
t)) = 1600t2− 1191t uniquely determines

E as an inner product. Explicitly, one can verify that E(t) = 3 =
∫ 1

0
(1600t3−1191t2) dt, as desired.
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